DOI QR코드

DOI QR Code

Nutrient Uptake Rate, Growth and Yield of Strawberry in Aquaponics

아쿠아포닉스 재배에서 딸기의 양분흡수율, 생육 및 수량

  • Min-Kyung Kim (Department of Agriculture and Life Science, Korea National Open University) ;
  • Su-Hyun Choi (Department of Agriculture and Life Science, Korea National Open University) ;
  • Seo-A Yoon (Department of Agriculture and Life Science, Korea National Open University) ;
  • Jong-Nam Lee (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Eun-Young Choi (Department of Agriculture and Life Science, Korea National Open University)
  • 김민경 (한국방송통신대학교 농학과 ) ;
  • 최수현 (한국방송통신대학교 농학과 ) ;
  • 윤서아 (한국방송통신대학교 농학과 ) ;
  • 이종남 (농촌진흥청 국립식량과학원 고령지농업연구소 ) ;
  • 최은영 (한국방송통신대학교 농학과)
  • Received : 2023.12.30
  • Accepted : 2024.01.28
  • Published : 2024.01.31

Abstract

This study aimed to compare the nutrient uptake rate, growth and yield of strawberry grown under the aquaponic and hydroponic systems in a plant factory. For aquaculture, 12 of fish (Cyprinus carpio cv. Koi) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5L of water at a density of 5.44 kg·m-3. The 30 seedlings of strawberry were planted in ports filled with perlite substrate and then were placed on the bed (W 0.7 m × L 1.5 m × H 0.22 m) at the top of the aquaponics system, and the 30 seedlings were planted in net-pots and then placed on the holes of acrylic plates (140 cm × 60 cm, Ø80 mm) on the bed (W 0.7 m × L 1.5 m × H 0.22 m) at the deep flow technique (DFT)- hydroponics. The pH and EC of the aquaponic solution was ranged from 4.3 to 6.9 and 0.32 to 1.14 dS·m-1, respectively, while those of hydroponics were ranged from 5.1 to 7.5 and 1.0-1.8 dS·m-1, respectively. The NO3-N and NH4-N concentration of the aquaponic solution were higher about 3.6 and 2.2 me·L-1 than those of the standard hydroponic solution for strawberry cultivation. The P, Ca, Mg, and S ions in the aquaponic solution were also higher about 0.76, 3.1, 0.8, and 0.9 me·L-1 than those of standard hydroponic solution, respectively, while the K and Fe were lower about 0.8 me·L-1 and 0.5 mg·L-1, respectively. The mineral contents of the strawberry leaves grown on aquaponics did not differ from that of hydroponics, and K content in the leaves were in an appropriate range. Uptake rates of T-N and P between the 58 and 98 days after transplant (DAT) were 1.5 and 1.9-fold higher in the aquaponics than those of hydroponics, respectively with no significant difference in the uptake rate of K. The crown diameter, plant height, and leaf length and width in the 98 DAT were significantly higher in aquaponics. The number of fruits per plant was significantly higher in aquaponics than those in hydroponics, and the fresh and dry weights of fruit and length and width of fruit were significantly higher in hydroponics. The results suggest that plants in aquaponics continuously utilize fertilizer components of solid particles from fish and feed wastes.

본 연구는 식물공장에서 아쿠아포닉스와 수경재배에서 재배된 딸기의 무기양분 흡수율, 생육, 수량을 비교하고자 수행되었다. 양어는 비단잉어(Cyprinus carpio) 12마리를 수조(W 0.7m × L 1.5m × H 0.45m, 472.5L)에 367.5L 물을 채운 후 입식하였고 5.44kg·m-3 밀도로 사육하였다. 딸기 모종 30개체는 펄라이트를 채운 포트에 정식하여 아쿠아포닉스 시스템 베드(W 0.7m × L 1.5m × H 0.22m)에 장착하였고, 모종 30개체는 네트포트에 정식한 후 담액수경(DFT)시스템 베드(W 0.7m × L 1.5m × H 0.22m)의 아크릴판(140 cm × 60 cm, Ø80 mm)에 장착하였다. 재배기간 동안 아쿠아포닉스 수조액의 pH와 EC는 각각 4.3-6.9, 0.32-1.14dS·m-1 수준이었고, 수경재배는 각각 5.1-7.5, 1.0-1.8dS·m-1이었다. 아쿠아포닉스 수조액의 NO3-N와 NH4-N 농도는 수경재배보다 각각 약 3.6, 2.2 me·L-1 높았다. P, Ca, Mg, S 농도는 수경재배보다 각각 약 0.76, 3.1, 0.8, 0.9me·L-1 높았으며, K와 Fe는 각각 약 0.8me·L-1, 0.5mg·L-1 낮았다. 딸기 잎의 무기이온 함량은 두 재배 처리 간 유의차가 없었으며 엽내 K 함량은 적정 범위를 보였다. 정식 후 58과 98일 사이에 아쿠아포닉스에서 재배된 딸기의 T-N와 P 흡수율은 수경재배보다 각각 1.5, 1.9배 높았고 K 흡수율은 유의차가 없었다. 개체당 과실수는 아쿠아포닉스에서 수경재배보다 유의하게 많았으며, 상품과 생체중, 건물중, 과실의 과장과 과폭은 수경재배에서 아쿠아포닉스보다 높았다. 결과를 종합하면, 아쿠아포닉스에서는 수조액의 물고기 배설물과 먹이 잔여물에 의한 고체 입자의 비료성분을 지속적으로 가용하여 활용한다는 것을 알 수 있다.

Keywords

Acknowledgement

This study was conducted with a financial support from Korea National Open University (2023).

References

  1. Bittsanszky A., N. Uzinger, G. Gyulai, A. Mathis, R. Junge, M. Villarroel, B. Kotzen, and T. Komives 2016, Nutrient supply of plants in aquaponic systems. Ecocycles 2:17-20. doi:10.19040/ecocycles.v2i2.57
  2. Blanchard C., D.E. Wells, J.M. Pickens, and D.M. Blersch 2020, Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae 6:10. doi:10.3390/horticulturae6010010
  3. Business Research Insight (BRI) 2024, Global Strawberry Market Size. Available online: https://www.businessresearchinsights.com/market-reports/fresh-strawberry-market-109872 (Accessed on 24 Jan 2024)
  4. Campbell C.R. 2000, Reference sufficiency ranges for plant analysis in the southern region of the United States. Southern Cooperative Series Bulletin 394:111.
  5. Choi S.H., M.K. Kim, Y.A. Jeong, S.A. Yoon, and E.Y. Choi 2023, Leaf mineral contents and growth characteristics of strawberry grown in aquaponic system with different growing media in a plant factory. J Bio-Env Con 32:122-131. doi:10.12791/KSBEC.2023.32.2.122
  6. Delaide B., G. Delhaye, M. Dermience, J. Gott, H. Soyeurt, and H. Jijakli 2017, Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquac Eng 78:130-139. doi:10.1016/j.aquaeng.2017.06.002
  7. Francis C., G. Lieblein, S. Gliessman, T.A. Breland, N. Creamer, R. Harwood, L. Salomonsson, J. Helenius, D. Rickerl, R. Salvador, M. Wiedenhoeft, S. Simmons, P. Allen, M. Altieri, C. Flora, and R. Poincelot 2003, Agroecology: The ecology of food systems. J Sustain Agric 22:99-118. doi:10.1300/J064v22n03_10
  8. Goddek S., B. Delaide, U. Mankasingh, K. Ragnarsdottir, H. Jijakli, and R. Thorarinsdottir 2015, Challenges of sustainable and commercial aquaponics. Sustainability 7:4199-4224. doi:10.3390/su7044199
  9. Graamans L., E. Baeza, A. Van Den Dobbelsteen, I. Tsafaras, and C. Stanghellini 2018, Plant factories versus greenhouses: Comparison of resource use efficiency. Agric Syst 160:31-43. doi:10.1016/j.agsy.2017.11.003
  10. Hochheimer J.N., and F.W. Wheton 1998, Biological filters: Trickling and RBC design. In GS Libey, MB Timmons, eds, Proceedings of the Second International Conference on Recirculating Aquaculture Roanoke Virginia, pp 291-318. http://web.deu.edu.tr/atiksu/ana52/trirbcdes.pdf
  11. Ivanovich C.C., T. Sun, D.R. Gordon, and I.B. Ocko 2023, Future warming from global food consumption. Nat Clim Chang 13:297-302. doi:10.1038/s41558-023-01605-8
  12. Lee H.C., N.J. Kang, I.R. Rho, H.J. Jung, J.K. Kwon, K.H. Kang, J.H. Lee, and S.C. Lee 2006, Hydroponic culture possibility and optimal solution strength of 'Pechika' everbearing strawberry on highland in summer. J Bio-Env Con 15:250-256.
  13. Lee J.N., H.J. Kim, K.D. Kim, D.L. Yoo, and J.T. Suh 2012, Characteristics of new ever-bearing strawberry 'Gwanha' cultivar for ornamental horticulture. Korean J Hortic Sci Technol 30:784-787.
  14. Lee S.W., G.C. Hwang, J.G. Yun, J.K. Hong, and S.J. Park 2014, Effect of various fruit-loads on yield, fruit quality and growth of 'Seolhyang' strawberry. J Bio-Env Con 30:205-211. doi:10.12791/KSBEC.2014.23.3.205
  15. Lee Y.B., K.W. Park, S.T. Park, J.H. Bae, H.J. You, H.Y. Jo, K.Y. Choi, and Y.Y. Choi 2015, In YB Lee. ed. Practical Hydroponics: Nutrient composition for leaf vegetable Ed 1. Jinsol, Korea, p 87.
  16. Lennard W.A., and R.V. Leonard 2006, A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int 14:539-550.
  17. Lester G.E., and B.D. Bruton 1986, Relationship of netted muskmelon fruit water loss to post-harvest storage life. J Am Soc Hortic Sci 111:727-731.
  18. Love D.C., J.P. Fry, L. Genello, E.S. Hill, J.A. Frederick, X. Li, and K. Semmens 2014, An international survey of aquaponics practitioners. PLoS ONE 9(7):e102662. doi:10.1371/journal.pone.0102662
  19. Marcelis L.F.M., E. Heuvelink, L.R. Baan Hotman-Eijer, J. Bakker, and L.B. Xue 2004, Flower and fruit abortion in sweet pepper in relation to sourve and sink strength. J Exp Bot 55:2261-2268.
  20. Monsees H., J. Keitel, M. Paul, W. Kloas, and S. Wuertz 2017, Potential of aquacultural sludge treatment for aquaponics: Evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquac Environ Interact 9:9-18.
  21. Pineda-Pineda J., I. Miranda-Velazquez, J.E. RodriguezPerez, J.A. Ramirez-Arias, E.A. Perez-Gomez, I.N. GarciaAntonio, and J.J. Morales-Parada 2017, Nutrimental balance in aquaponic lettuce production. Acta Hortic 1170:1093-1100.
  22. Rakocy J.E., M.P. Masser, and T.M. Losordo 2006, Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. SRAC publication No. 454 https://wkrec.ca.uky.edu/files/454fs.pdf
  23. Rural Development Administration (RDA) 2019, Standard farming textbook (strawberry cultivation) - standard process of fertilizer. Accessed 12 January 2023.
  24. Schreier H.J., N. Mirzoyan, and K. Saito 2010, Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotech 21:318-325. doi:10.1016/j.copbio.2010.03.011
  25. Shukla J., V.P. Mohandas, and A. Kumar, 2008, Effect of pH on the Solubility of CaSO4 2H2O in Aqueous NaCl Solutions and Physicochemical Solution Properties at 35℃. J Chem Eng Data 53:2797-2800.
  26. Somerville C., M. Cohen, E. Pantanella, A. Stankus, and A. Lovatelli 2014, Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper; Rome. Iss., p 589.
  27. Thorarinsdottir R. 2015, Aquaponics guidelines. Haskolaprent, Reykjavik, Iceland, p 40.
  28. Tyson R.V., E.H. Simonne, D.D. Treadwell, M. Davis, and J.M. White 2008, Effect of water pH on yield and nutritional status of greenhouse cucumber grown in recirculating hydroponics. J Plant Nutr 31:2018-2030. doi:10.1080/01904160802405412
  29. Yang T., and H.J. Kim 2020, Comparisons of nitrogen and phosphorus mass balance for tomato, basil, and lettuce-based aquaponic and hydroponic systems. J Cleaner Prod 274:122619. doi:10.1016/j.jclepro.2020.122619