• Title/Summary/Keyword: Solid electrolyte

Search Result 698, Processing Time 0.029 seconds

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

Physical and Electrochemical Properties of Polyaniline-Ionic Liquid Composite (폴리아닐린-이온성 액체 복합체의 물리적전기화학적 특성)

  • Bang, Joo-Yong;Jeong, Woo-Sung;Park, Hyung-Soon;Chung, Kyung-Ho;Nath, Narayan Chandra Deb;Lee, Jae-Joon;Cha, Eun-Hee;Lee, Jae-Kwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.181-185
    • /
    • 2010
  • Polyaniline-ionic liquid composite was prepared and investigated its physical and electrochemical properties. The quasi-solidification was presented in imidazolium-based ionic liquid (1-methly-3-propylimidazolium iodide, PMI-I) containing above 30 wt% of polyaniline (emeraldine base), which exhibited around 80% decrease of conductivity compared to pristine ionic liquid, resulting in fibril structure trough ${\pi}-{\pi}$ self-assembled of imidazolium aromatic ring of ionic liquid on polyaniline framework.

Synthesis of Poly(MMA-co-PEGMA) Electrolytes by Grafting-onto Method and Effect of Composition on Ionic Conductivities (Grafting-onto법에 의한 poly(MMA-co-PEGMA) 전해질의 합성과 이온전도도에 대한 조성의 영향)

  • Lee, Ju-Hyung;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.198-203
    • /
    • 2013
  • Copolymer consisted of MMA and tBMA was synthesized by radical polymerization and poly(MMA-co-MA) was prepared by selective hydrolysis of tert-butyl group. The obtained polymer was coupled with epoxy functionalized PEO of various molecular weight to synthesize poly(MMA-co-PEGMA) with different side chain length. The AC-impedance measurement shows $1.88{\times}10^{-6}Scm^{-1}$ of room temperature ionic conductivity from 48mol% of MMA while $5.11{\times}10^{-8}Scm^{-1}$ was observed in 82mol% sample. In addition, there was an effect of PEGMA molecular weight on ionic conductivity possibly due to the steric hindrance in grafting-onto coupling reaction. Finally, the polymer electrolytes shows electrochemical stability up to 6V at room temperature.

Effect of Gd2O3 and Sm2O3 Addition on the Properties of CeO2 (CeO2에서의 Gd2O3 및 Sm2O3첨가량변화에 따른 특성변화)

  • 최광훈;이주신;류봉기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.979-986
    • /
    • 2003
  • Sintering behavior and electrical properties of CeO$_2$ system were investigated as a function of the amount of Gd:$_2$O$_3$, and Sm$_2$O$_3$, addition. Doped CeO$_2$ consisted of a homogeneous solid solution of the cubic fluorite structure within the amount of addition from 0 mol% to 15 mol%. Grain growth rate of Gd$_2$O$_3$-doped CeO$_2$ was much smaller than that of pure CeO$_2$, while densification rate was considerably larger. Thus doped CeO$_2$ showed a higher density than pure CeO$_2$. The electrical conductivity of Ce$_1$-$_{x}$Sm$_{x}$O$_1$-$_{x}$/2 was increased up to x = 0.2. However, with further increasing dopant concentrations, the magnitude of the conductivity was found to decrease remarkably. The ionic conductivity value obtained at $700^{\circ}C$ for 10 mol% Sm$_2$O$_3$-doped CeO$_2$ electrolyte was 4.6${\times}$10$^{-2}$ S$.$$cm^{-1}$ /.EX> /.

A Study on the Synthesis of Gd-doped $CeO_2$ and Sr-doped $LaMnO_3$ Powders and Phase Stability in Their Interface (Gd-doped $CeO_2$ 와 Sr-doped $LaMnO_3$ 분말의 합성 및 그 계면에서의 상 안정성 연구)

  • 정승훈;김남진;이덕열
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.652-658
    • /
    • 1997
  • The phase stability in the interface of Sr-doped LaMnO3(LSM)/Gd-doped CeO2(CGO) was examined in this study in order to check the feasibility of using LSM as the cathode material in a low-temperature SOFC(solid oxide fuel cell) using CGO as the electrolyte. For the purpose, CGO powders of Ce0.82Gd0.18O0.91 and two LSM powders having different compositions, La0.9Sr0.1MnO3(LSM10) and La0.5Sr0.5MnO3(LSM50), were synthesized using Pechini method. Then, specimens having the LSM/CGO interface were prepared, heat-treated at 130$0^{\circ}C$ for up to 3 days, and analyzed by XRD and STEM/EDX. Face-centered cubic CGO powders of less than 10 nm size were obtained by calcination of polymeric precursor formed in the process at 45$0^{\circ}C$. Higher calcination temperature of $700^{\circ}C$ was necessary for monoclinic LSM10 and cubic LSM50 powders. LSM powders were coarser than CGO and observed to be in the range of 50~100 nm. No trace of LSM-CGO interaction product was found in the XRD pattern. Also it was known from the concentration profile in the vicinity of the interface that interdiffusion was occurred over only a small penetration depth of ~100 nm order.

  • PDF

Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System (ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Computer Simulation on the Poling Mechanism for the Control of 2nd Order Optical Nonlinearity in Silica Glass (2차 비선형 광특성의 제어를 위한 실리카 유리의 전기분극 기구 전산모사)

  • Yu, Ung-Hyeon;Lee, Seung-Gyu;Sin, Dong-Uk;Jeong, Yong-Jae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • Silica glass is a core material for optical fiber in optical telecommunications, but its centrosymmetry eliminates the second order nonlinearity. But it is experimentally well known that the space charge polarization induces the Second Harmonic Generation (SHG) when a strong DC voltage is applied to silica glass for a long period of time with metal blocking electrodes. In this report, the results of a theoretical calculation of the nonlinear optical property caused by the space charge polarization, and a model of a numerical analysis to predict the small chance in nonlinear optical property as functions of time and space are provided. Assuming that amorphous silica is a solid state electrolyte and sodium ion is the only mobile charge carrier, 'Finite Difference Method' was employed for modeling of numerical analysis. The distributions of the concentration of sodium ion and electric field as functions of a normalized length of the specimen and a normalized applied voltage were simulated.

  • PDF

Conditioning Effects on LSM-YSZ Cathodes for Thin-film SOFCs

  • Lee You-Kee;Visco Steven J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • Composite cathodes of $50/50\;vol\%$ LSM-YSZ $(La_{-x}Sr_xMnO_3-yttria\;stabilized\;zirconia)$ were deposited onto dense YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and studied by ac-impedance spectroscopy (IS). The conditioning effects on LSM-YSZ cathodes were seen and remedies for these effects were noted in order to improve the performance of a solid oxide fuel cell (SOFC). The effects of temperature on impedance, surface contamination on cathode bonding to YSZ electrolyte, changing Pt paste, aerosol spray technique applied to curved surface on microstructure and cell to cell variability were solved by testing at $900^{\circ}C$, sanding the YSZ surface, using only one batch of Pt paste, using flat YSZ plates and using consistent procedures and techniques, respectively. And then, reproducible impedance spectra were confirmed by using the improved cell and the typical spectra measured for an (air)LSM-YSZ/YSZ/LSM-YSZ(air) cell at $900^{\circ}C$ were composed of two depressed arcs. Impedance characteristics of the LSM-YSZ cathodes were also affected by experimental conditions such as catalytic interlayer, composite cathode compositions and applied current.

Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries (리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성)

  • Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.