• Title/Summary/Keyword: Solid digestion

검색결과 141건 처리시간 0.016초

쌀누룩과 수수를 사용한 고체발효 증류주의 제조 특성 (Manufacturing Characteristics of Solid-State Fermentation Distilled Spirits Using Rice Nuruk (Fermented Starter) and Sorghum)

  • 신제영;정다솜;강창수;최한석
    • 현장농수산연구지
    • /
    • 제23권1호
    • /
    • pp.39-48
    • /
    • 2021
  • In this study, characteristics of solid-state fermentation distilled spirits with nuruk (fermentation starter) and sorghum were investigated. The starch digestion activity was highest in black koji (A. usamii) at 359.15 U/g dry base, white koji (A. luchuensis) at 306.98 and yellow koji (A. oryzae) at 15.31 was followed. The pH of the solid-state fermented mash in yellow, white and black koji showed 5.09, 4.46 and 4.50 respectively with significant differences (p<0.001). The total acid content of white and black koji was 0.73% as citric acid. The alcohol content of mash prepared with yellow, white and black koji was 4.34, 4.24, 3.89% respectively. The contents of reducing sugar showed 3.28, 3.23 and 2.64%. Total sugar were 14.88, 17.84 and 17.60% respectively. The alcohol content of each distillate ranged from 44.3 to 39.9%, and the furfural content in yellow koji was 1.25 times lower than the others.

크릴간장 제조(製造)에 관한 연구(硏究) (Studies on the Processing of Krill Sauce)

  • 이응호;조순영;차용준;박향숙;권칠성
    • 한국식품영양과학회지
    • /
    • 제13권1호
    • /
    • pp.97-106
    • /
    • 1984
  • 남대양(南大洋)에 다량 서식하고 있는 중요한 단백질자원(蛋白質資源)인 크릴을 보다 유효하게 식량(食糧)으로 이용하기 위한 방안의 하나로 크릴을 원료로 하여 그 자체에 존재하는 활성이 높은 자가소화효소(自家消化酵素)나 단백질분해효소(蛋白質分解酵素)로써 크릴간장 제조(製造)를 시도(試圖)하였다. 마쇄한 크릴에 동량(同量)의 물을 첨가하여 가수분해(加水分解)시킬 때의 최적가수분해조건(最適加水分解條件) 및 저장안정성(貯藏安定性)을 검토(檢討)하고 아울려 제품의 정미성분(呈味成分)을 분석(分析)하였다. 자가소화(自家消化)에 의한 경우와 bromelain, complex enzyme을 첨가한 시료(試料) 모두 $52.5^{\circ}C$에서 최대활성을 나타내었고, 분해시간(分解時間)은 3시간(時間)이 적합하였으며, 효소농도(醴素濃度)는 bromelain의 경우 0.5 %, complex enzyme은 5%가 가장 좋았다. 그리고 pH는 자가소화(自家消化)나 complex enzyme을 첨가하여 분해(分解)하였을 경우는 7.0${\sim}$7.5, bromelain을 첨가하여 분해(分解)하였을 때는 6.5부근에서 가장 활성이 높았다. 이와 같은 최적가수부해조건(最適加水分解條件)에서 크릴을 자가소화(自家消化)시킨 후 $100^{\circ}C$, 20 분간(分間) 불활성화한 다음 여과한 가수분해물(加水分解物)에 식염(食鹽)(10 %)과 벤조산(0.06%)이나 알코올(3 %)을 첨가하여 멸균한 유리병에 밀봉(貯減)한 결과 $37^{\circ}C$에서 한달간 저장(貯藏)하여도 화학적, 미생물적 및 관능적으로 안정하였다. 또한 관능적인 맛으로 보아 식염(食鹽) 10 % 중 5 % 정도까지는 나트륨염(鹽) 대신 칼륨염(鹽)을 대체 첨가할 수 있었다. 크릴간장의 단백질가수분해율(蛋白質加水分解率)은 자가소화법(自家消火法)인 경우 83.2%, bromelain 첨가구는 89.7%, complex enzyme 첨가구는 92.7 %이었다. 자가소화법(自家消化法), bromelain 또는 complex enzyme첨가에 의해 제조(製造) 된 크릴간장의 유리(遊離)아미노산(酸) 중 함량이 많은 것은 lysine, arginine, leucine, proline, alanine 및 valine으로서 전 유리(遊離)아미노산(酸)에 대해 각각 58.8 %, 56.0 %, 55.3 %를 차지하였다. 그리고 전엑스분망(分望) 소(素)에 대하여 유리(遊離)아미노산(酸)이 차지하는 비율은 각각 67.4 %,69.4%, 69.8 %이었다. 핵산관련물질(核酸關聯物質) 중 함량이 가장 많은 것은 hypoxanthine이었고, 다음이 5’-IMP였다. TMAO, betaine, 총 creatinine은 함량이 적었다. 관능검사결과(官能檢査結果) 자가소화(自家消化)시킨 크릴간장은 효소(酵素)처리한 것이나 재래식 콩간장에 비하여 품질 면에서 손색이 없고 저장성(貯藏性)이 좋은 크릴간장을 제조(製造)할 수 있다는 결론을 얻었다.

  • PDF

음식물쓰레기의 유기물 부하 및 식종율 변화가 생분해도에 미치는 영향 (The Effect of Organic Loading and Seeding Rate to Biodegradibility of Food Waste)

  • 박남배;정용현;양병수
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.25-31
    • /
    • 1999
  • Energy recovery technology from municipal solid waste has been increasingly established in many countries. Anaerobic treatment of municipal sewage sludge has low digestion efficiency because of low organic loading rate of sewage sludge. The purpose of this study was to evaluate anaerobic biodegradability of food waste which was based on organic loading rate and seeding rate. From the results of anaerbic biodegration, the optimum condition for seeding rate was turn out over 40%, which did not inhibition of methane production.

  • PDF

Effects of Organic Content on Anaerobic Biodegradability of Sludge Generating from Slaughterhouse

  • Oh, Seung-Yong;Kim, Ho;Kim, Chang-Hyun;Kim, Seung-Hwan;Yoon, Young-Man
    • 한국토양비료학회지
    • /
    • 제46권4호
    • /
    • pp.296-302
    • /
    • 2013
  • This study was carried out to investigate the effect of organic content level on ultimate methane potential and anaerobic biodegradability of substrate by biochemical methane potential assay. Three organic matters (whole sludge and liquid and solid fraction of sludge) of the same origin, which had different organic contents, were fermented at the batch anaerobic reactor for 70 days. Ultimate methane potential and anaerobic biodegradability were determined by the terms of volatile solid (VS) and chemical oxygen demand (COD). Volatile solid contents of whole sludge and solid and liquid fraction of sludge were 2.4, 18.8, and 0.2% and COD were 5.3, 30.4, and 0.5%, respectively. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{VS}$) determined by VS content were $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for whole sludge, $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for the liquid fraction of sludge, and $0.6Nm^3kg^{-1}-VS_{added}$, 77.0% for the solid fraction of sludge. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{COD}$) determined by COD were $0.2Nm^3kg^{-1}-COD_{added}$, 73.4% for whole sludge, $0.2Nm^3kg^{-1}-VS_{added}$, 74.0% for the liquid fraction of sludge, and $0.33Nm^3kg^{-1}-COD_{added}$, 99.1% for the solid fraction of sludge. In conclusion, ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results because COD might be underestimated by the interference of $NH_4{^+}$ in the case of highly concentrated organic material.

ASBR에 의한 고농도폐수의 혐기성처리 연구 (Study on the Treatability of High-Concetration Wastewater by ABBR)

  • 김종찬;김요용;김세진;정일현
    • 환경위생공학
    • /
    • 제10권1호
    • /
    • pp.98-105
    • /
    • 1995
  • In the treatment of wastewater or sewage plant sludge with high solid concentration, high rate digestion process in which heating and mixing occur at a time is mainly used, and in the case of wastewater containing solid matter below 1000mg/ℓ the recently developed AF or UASB is developed Recently and commonly utilized. But these processes have weakpoints such as clogging of packing media and need of long period of trial run after microorganism granulation. In this point of view, there are active researches on the ASBR( anaerobic sequence batch reaction ) that is capable of treating of organic matter with reactor that has no packing materials and controlling the inflow time, reaction time sedimentation time and outflow time by time control without loss of microorganisms. The objectives of this study are to evaluate the efficiency of ASBR process according to the reaction time, change of treated water quality and gas output rate in the treatment of wheat plant wastewater.

  • PDF

STUDIES IN FIBRE DIGESTION AND PASSAGE RATE OF LIQUID AND SOLID IN CATTLE AND BUFFALOES

  • Abdullah, N.;Ho, Y.W.;Mahyuddin, M.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권2호
    • /
    • pp.137-141
    • /
    • 1991
  • Rumen liquor characteristics and disappearance rate of dry matter were studied in Kedah-Kelantan cattle and swamp buffaloes fed grass of rice straw-based diet. Cobalt-EDTA and chromium mordented fibres prepared from the faecal material were used to determine the liquid and solid particles movement in both animal species fed with rice straw. Swamp buffaloes showed a more intense rumen fermentation activity than Kedah-Kelantan cattle when both species were fed straw-based diet. The buffaloes also demonstrated faster rates of grass and straw degradation in situ. The fluid outflow rate from the rumen of buffalo ($1.06{\pm}0.19l/h$) was observed to be slower than that of cattle ($1.55{\pm}0.01l/h$). No significant differences between cattle and buffaloes were observed in rumen fluid volume and passage rate of small particles from the rumen.

농축산바이오매스 고온 혐기성 생분해도 평가 (Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass)

  • 허남효;강호;이승헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Methane production by high temperature anaerobic digestion of food wastes

  • Song, Hyo-Jeong;Seo, Jin-Ho;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.266-269
    • /
    • 2005
  • 반응조의 유입수 CODcr농도를 $75000{\sim}95000mg/L$로 운전하였을 경우 유출수 CODcr농도는 $14000{\sim}19000mg/L$로서, 제거율은 $75{\sim}85%$로 나타났다. 고온소화$(45{\pm}2^{\circ}C)$로 운전한 결과 유입수 pH는 $4.2{\sim}4.5,$ 유출수의 pH는 $6.8{\sim}7.2$를 유지하였다. TS(총고형물질)와 VS(휘발성고형물질)의 유입수를 단계적으로 각각 $2.94{\sim}5.09%$$2.98{\sim}5.01%$로 유지할 경우, 유출수는 단계적으로 각각 $0.65{\sim}1.1%$$0.6{\sim}0.8%$였다. 유출수의 TS, VS의 제거율은 각각 78, 85%이었다. $CH_4$발생량은 0.28 $m^3-CH_4/kg-VS$이었다.

  • PDF

거대억새(Miscanthus sacchariflorus)의 혐기소화를 위한 메탄생산 퍼텐셜 분석 (Biochemical Methane Potential Analysis for Anaerobic Digestion of Giant Miscanthus (Miscanthus sacchariflorus))

  • 유정숙;김창현;윤영만
    • 한국환경농학회지
    • /
    • 제36권1호
    • /
    • pp.29-35
    • /
    • 2017
  • BACKGROUND: This study was carried out to assess a biochemical methane potential of giant miscanthus (Miscanthus sacchariflorus) which was a promising candidate energy crop due to a high biomass productivity, in order to utilize as a feedstock for the biogas production. METHODSANDRESULTS: Giant miscanthus was sampled the elapsing drying time of 6 months after harvesting. TS (Total Solid) and VS (Volatile Solid) contents were 94.7 and 90.8%. And CP (Crude Protein), EE (Ether Extracts), and CF (Crude Fiber) contents of giant miscanthus were 1.4, 0.46, and 46.12%, respectively. In the organic composition of giant miscanthus, the NDF (Neutral Detergent Fiber) representing cellulose, lignin, and hemicellulose contents showed 86.88%, and the ADF (Acid Detergent Fiber) representing cellulose and lignin contents was 62.91%. Elemental composition of giant miscanthus showed 47.75%, 6.44%, 41.00%, and 0.28% for C, H, O, and N, respectively, and then, theoretical methane potential was obtained to $0.502Nm^3kg^{-1}-VS_{added}$. Biochemical methane potential was assessed as the range of $0.154{\sim}0.241Nm^3kg^{-1}-VS_{added}$ resulting the lower organic biodegradability of 30.7~48.0%. CONCLUSION: Therefore the development of pretreatment technology of the giant miscanthus was needed for the improvement of anaerobic digestability.

파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구 (Pilot Scale Anaerobic Digestion of Korean Food Waste)

  • 이준표;이진석;박순철
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF