• Title/Summary/Keyword: Solid columns

Search Result 83, Processing Time 0.021 seconds

Nonlinear Finite Element Analysis of Circular Hollow Reinforced Concrete Columns Based on Design Variables (설계변수에 따른 중공원형 철근콘크리트 교각의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Lee, Seung-Jin;Lee, Byung-Ju;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The seismic design of solid reinforced concrete bridge columns has been committed to, based on accumulated research and design specifications. The rational confinement model and seismic performance evaluation, however, are insufficient because of the lack of domestic and foreign design specifications about the experimental and analytical difficulties in the case of circular hollow reinforced concrete columns. In this paper, the seismic behavior of circular hollow reinforced concrete columns and its dependence on design variables are understood and explained. These research results can be used to derive the rational and economical design specifications for circular hollow sectional columns based on the result from the nonlinear analysis program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology).

The Solid Phase Extraction of Phenol and Chlorophenols by the Chemically Modified Polymeric Adsorbents with Porphyrins

  • Jung, Min-Woo;Kim, Ki-Pal;Cho, Byung-Yun;Paeng, Insook R.;Lee, Dai-Woon;Park, Young-Hun;Paeng, Ki-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • The commercially available Amberlite XAD-2 and XAD-4 resins were modified with macrocyclic protoporphyrin IX (PPIX) or tetrakis(p-carboxyphenyl) porphyrin (TCPP) to enhance the adsorption capacity for phenol and chlorophenols. The chemically modified polymeric adsorbents (XAD-2+PPIX, XAD-2+TCPP, XAD-4+PPIX, and XAD-4+TCPP) were applied to the solid phase extraction as an adsorbent material for the preconcentration of phenol and chlorophenols in environmental waters. Generally, the synthesized adsorbents showed higher recoveries than underivatized adsorbents, XAD-2 and XAD-4, without matrix interferences. Especially, XAD-4+PPIX showed more than 90% recoveries for all compounds used in this study including hydrophilic phenol. The major factor for the increase of the adsorption capacity was the increase of $\pi$-$\pi$ interaction between adsorbents and samples due to the introduction of the porphyrin molecule. However, the breakthrough volumes and recovery values of the XADs+TCPP columns were slightly decreased for the bulky chlorophenols such as TCP and PCP. Using molecular mechanics methods, the structures of TCPP and PPIX were compared with that of porphine, the parent molecule of porphyrin. Four bulky p-carboxyphenyl groups of TCPP were torsional each other, thus the molecular plane of TCPP were not on the same level. In conclusion, the decrease of breakthrough volumes and recovery values of XADs+TCPP columns for bulky phenols can be explained by the steric hindrance of the $\pi$-$\pi$ interaction between porphyrin plane and the phenols.

Seismic behavior of steel reinforced concrete cross-shaped column under combined torsion

  • Chen, Zongping;Liu, Xiang
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • Experiments were performed to explore the hysteretic performance of steel reinforced concrete (SRC) cross-shaped columns. Nine specimens were designed and tested under the combined action of compression, flexure, shear and torsion. Torsion-bending ratio (i.e., 0, 0.14, 0.21) and steel forms (i.e., Solid - web steel, T - shaped steel, Channel steel) were considered in the test. Both failure processes and modes were obtained during the whole loading procedure. Based on experimental data, seismic indexes, such as bearing capacity, ductility and energy dissipation were investigated in detail. Experimental results suggest that depending on the torsion-bending ratio, failure modes of SRC cross-shaped columns are bending failure, flexure-torsion failure and torsion-shear failure. Shear - displacement hysteretic loops are fuller than torque - twist angle hysteretic curves. SRC cross-shaped columns exhibit good ductility and deformation capacity. In the range of test parameters, the existence of torque does not reduce the shear force but it reduces the displacement and bending energy dissipation capacity. What is more, the bending energy dissipation capacity increases with the rising of displacement level, while the torsion energy dissipation capacity decreases.

Behaviors of Hollow RC Columns with Internal Steel Tube by Hollow Ratio (강관으로 보강된 중공 RC 기둥의 중공비에 따른 거동)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • The hollow RC(Reinforced concrete) column has the effect of reducing weight and materials compared to solid RC column. However, the hollow RC column shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC columns were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The hollow ratio is varied from 0.50 to 0.85.

A Study on the Meaning and Role of Columes in Mies's Works (Mies van der Rohe 건축에서 기둥의 역할과 의미에 관한 연구)

  • Lee, Byung-Wook;Kim, Yong-Seung;Park, Yong-Hwan
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.123-130
    • /
    • 2007
  • This paper Is to reconsider his architectural significance by understanding the role and moaning of the columns shown in the works of Mies. The reason of such an approach is to reflect the tendency to overlook the various significances of Mies's works as we interpret his architecture simply as a simplified work by abstraction. The process of simplification often neglects open interpretation so that it offers partial and unified cognition frame and causes remaking of closed meanings. It removes some possibilities of new interpretation for Mies's works. The study suggests that his columns are a medium to show the solid body transferring architectural significance in contrast to the immaterialization of body as transparency of modem architecture. It can be said that all the human cognition is usually made within the material limit of visibility and tangibility.

Development of Connection between CFT Prefounded Column and Slab (CFT 선기초기둥과 슬래브 접합부 개발)

  • Song, Jee-Yun;Rhim, Hong-Chul;Kim, Seung-Weon;Kim, Dong-Gun;Kang, Seung-Ryong;Jeong, Mee-Ra
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.129-133
    • /
    • 2008
  • For the construction of Top-Down structures, it is crucial to have a solid connection between prefounded columns and slabs. This paper presents a new construction method for the connection when using a circular Concrete Filled Tube (CFT) as a prefounded column as an alternative to currently using wide flange type columns. The development of shear studded jackets along with a shear band suitable for the circular shape of the column has been made. The details and mechanism of the connection is explained together with the results of experiments which verified the structural integrity of the connection.

  • PDF

The Determination of Critical Buckling Load Applied to Tapered Columns (일정변단면(一定變斷面) 장주(長柱)의 임계좌굴하중(臨界挫屈荷重)의 결정(決定))

  • Yu, Chul Soo;Sohn, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 1984
  • New formulas to determine the critical elastic buckling load of long tapered columns are given. This study is restricted to solid round or rectangular columns with fixed-free ends as often used in highway design. The exact solution of the differential equation of the deflection curve is expressed in terms of Bessel Function and the solution is numerically evaluated using Bisection method by computer. In the F.E.M analysis of columns under their own weight, the stability problem can be resulted in a eigen value problem of conservative system. Approximate solution by the F.E.M is evaluted numerically using Jacobi method and compared with exact solution of the prismatic column to increase the precision. In addition, critical buckling load of the tapered column for every shape factor and ratio of cross-sectional change (Diameter of bottom end/Diameter of upper end) was converted into a comparable expression to critical buckling load of the prismatic column.

  • PDF

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.

Scale-up of Covalently Immobilized Urokinase Column and Repeated Use of It by Solid-Phase Refolding (공유결합으로 고정화된 urokinase 칼럼의 스케일업과 solid-phase refolding에 의한 반복 사용)

  • 서창우;최강선;이은규
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.500-504
    • /
    • 2001
  • We scaled up a covalent immobilization system of urokinase to the activated Sepharose and used it repeatedly to cleava a fusion protein consisting of human growth hormone and GST fragment. After scale up from 6 ml to 250 ml. the column system still demonstrated basically the same performance in terms of urokinase immobilization and fusion protein cleavage. When the column was washed with 6 M guanidine HCI after the cleavage reaction, the immobilized urokinase showed no activity probably becasue it was fully unfoled. However, as the denaturant was gradually removed from the column the immobilized urokinase fully regained its bioactivity, which indicated it was properly refolded into is natie conformation as covalently attached to the solid matrix. After 20 cycles of this solid-phase unfolding/refolding. the immobilized urokinase maintained approx. 80% of the initial bioactivity. This method provides and efficient protocol to apply the solid-phase refolding technique to improve the longevity of immobilized enzyme columns.

  • PDF

Characterization of Natural Organic Matter in Spring Water

  • Yoo, Hee-Jin;Choi, Yoon-Ji;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.90-94
    • /
    • 2020
  • Interest in aspects of industrialization relating to human health has increased. Accordingly, the use of labels such as 'natural foods' and 'organic ingredients' has become more widespread, and greater emphasis is being placed on improving quality of life. Water is an essential element for human life, and water quality has a significant impact on human health. However, technology that can precisely determine the substances present in water is still lacking. This study was conducted to establish a complete mass spectrometry process, from pretreatment to analysis, to measure and characterize natural organic matter (NOM) in Korean spring water samples. Salts and other matrices were removed from the samples using solid-phase extraction (SPE) with two different columns (PPL and C18). After establishing an accurate analysis method, the experimental results were evaluated based on Van Krevelen diagrams and analysis of molar O/C and H/C ratios. The method for characterizing NOM introduced herein should facilitate evaluation of water quality.