• Title/Summary/Keyword: Solid State NMR

Search Result 225, Processing Time 0.024 seconds

Titanized or Zirconized Porous Silica Modified with a Cellulose Derivative as New Chiral Stationary Phases

  • Seo, You-Jin;Kang, Gyoung-Won;Park, Seong-Tae;Moon, Myeong-Hee;Park, Jung-Hag;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.999-1004
    • /
    • 2007
  • Spherical porous silica supports modified with titanium or zirconium alkoxides were prepared, and allyl groups were chemically attached to the titanized or zirconized silica supports, and the product was cross-polymerized with a double bond containing cellulose derivative to yield new CSPs (chiral stationary phases). Magic angle spinning 13C solid state NMR and elemental analysis were used to characterize the CSPs. The performances of the chiral stationary phases were examined in comparison with a conventional chiral stationary phase. Spherical porous silica particles modified with 3,5-dimethylphenylcarbamate of cellulose were prepared and used as the conventional chiral stationary phase. Chromatographic data were collected for a few pairs of enantionmers in heptane/2-propanol mixed solvents of various compositions with the three chiral columns and the results were comparatively studied. The separation performance of the chrial phase made of the titanized silica was better than the others, and the separation performance of the chiral phase of the zirconized silica was comparable to that of the conventional chiral phase. The superiority of titanized silica over bare or zirconized silica in chiral separation seemed to be owing to the better yield of crosslinking (monitored by increase of carbon load) for titanized silica than for the others.

Synthesis and Characterization of (THF)3 Li(NC)CU(C6H3-2,6-Mes2)and Br(THF)2 Mg(C6H3-2,6-Trip2) (Mes = C6H2-2,4,6-Me3; Trip = C6H2-2,4,6-i-Pr3): The Structures of a Monomeric Lower-Order Lithi

  • Hwang, Cheong-Soo;Power, Philip P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.605-609
    • /
    • 2003
  • The lower-order lithium organocyanocuprate compound, (THF)₃Li(NC)Cu($C_6$H₃-2,6-Mes₂) (1), and the bulky terphenyl Grignard reagent, Br(THF)₂Mg($C_6$H₃-2,6-Trip₂) (2), have been synthesized and structurally characterized both in the solid state by single crystal x-ray crystallography and in solution by multi-nuclear NMR and IR spectroscopy. The compound (1) was isolated as a monomeric contact ion-pair in which the C (organic ipso)-Cu-CN-Li atoms are coordinated linearly. The lithium has a tetrahedral geometry as a result of solvation by three THF molecules. The compound (1) is the first example of fully characterized monomeric lower order lithium organocyanocuprate. The bulky Grignard reagent (2) was also isolated as a monomer in which the magnesium, solvated by two THF molecules, has a distorted tetrahedral geometry. The crystals of (1) possess triclinic symmetry with the space group $P{\={1}}$, Z = 2, with a = 12.456(3) Å, b = 12.508(3) Å, c = 13.904(3) Å, α = 99.81°, β = 103.72(3)°, and γ = 119.44(3)°. The crystals (2) have a monoclinic symmetry of space group $P2_{1/C}$, Z = 4, with a = 13.071(3) Å, b = 14.967(3) Å, c = 22.070(4) Å, and β = 98.95(3)°.

Studies on the in vitro SPF Assay and Application of Cosmetic Formulation of Methoxycinnamidopropyl Polysilsesquioxane with a New UV-screening Agent (신규 자외선차단제로서 메톡시신나미도프로필폴리실세스퀴옥산의 in vitro SPF 평가 및 화장품에의 적용성에 대한 연구)

  • Jung, Taek-Kyu;Kim, Young-Back;Yoon, Tae-Jin;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.47-55
    • /
    • 2010
  • UV-screening agents have some adverse effects that raise consumers' concern. The organic agents often cause irritation and may penetrate into human body while the inorganic agents raise aesthetic issues because they often turn opaque. Organic agents with high molecular weights and nano-sized inorganic agents have been developed respectively to minimize transdermal intrusion into human body and suppress turning opaque. Recently, we reported preparation of powdery UV-screening agents made of polysilsesquioxane, an organic-inorganic hybrid material. Powders would not penetrate into epidermis and organic-inorganic hybrid nature would suppress the opaqueness problem. In this study, we continued our research on this powdery polysilsesquioxane UV-screening agent, SESQUV, regarding its chemical composition, its synergic UV-screening effects when mixed with other organic agents, and its applicability in practical formulation. Results showed SESQUV was promising UV-screening agents useful in sunscreen formulation.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

Surface Modification of Microcrystalline Cellulose (MCC) Filler for CO2 Capture (CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구)

  • Yang, Yeokyung;Park, Seonghwan;Kim, Hanna;Hwang, Ki-Seob;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.60-67
    • /
    • 2017
  • In this study, we performed surface modification of biodegradable microcrystalline cellulose (MCC) to use as a filler in polyethylene (PE) composite in food packaging application. We modified MCC surface with (3-trimethoxysilylpropyl)diethylenetriamine (TPDT) silane coupling agent, which has one primary amino group and two secondary amino groups per molecule, to introduce amino groups with a carbon dioxide adsorption capability in MCC. Effects of each of the reaction conditions such as amount of TPDT introduced, swelling time, reaction temperature, and reaction time on surface modification degree of MCC were investigated by changing a variety of above reaction conditions. The amount of TPDT grafted on MCC surface and formation of chemical bonds were confirmed by Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and solid state $^{29}Si$ nuclear magnetic resonance (NMR) spectroscopy. We confirmed increase of grafted amount of TPDT on MCC with increasing reaction time, reaction temperature, and amount of introduced TPDT.

Synthesis, Potentiometric, Spectral Characterization and Microbial Studies of Transition Metal Complexes with Tridentate Ligand (세자리 리간드의 전이금속 착물에 대한 합성과 전위차 및 분광학적 확인 그리고 미생물학적 연구)

  • Jadhav, S.M.;Munde, A.S.;Shankarwar, S.G.;Patharkar, V.R.;Shelke, V.A.;Chondhekar, T.K.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.515-522
    • /
    • 2010
  • A relation between antimicrobial activities and the formation constants of solid complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with tridentate Schiff base ligand, 4-hydroxy-3(1-{2-(benzylideneamino)-phenylimino}-ethyl)-6-methyl-2Hpyran-2-one (HL) derived from o-phenylene diamines, dehydroacetic acid (DHA) and p-chloro benzaldehyde have been studied. The ligand and metal complexes were characterized by elemental analysis, conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, $^1H$-NMR, UV-vis and mass spectra. From the analytical data, the stiochiometry of the complexes was found to be 1:2 (metal:ligand) with octahedral geometry. The molar conductance values suggest the nonelectrolytic nature of metal complexes. The X-ray diffraction data suggests monoclinic crystal system for Ni(II) and orthorhombic crystal system for Cu(II) and Co(II) complexes. The IR spectral data suggest that the ligand behaves as tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behavior (TG/DTA) and kinetic parameters calculated by Coats-Redfern method suggests more ordered activated state in complex formation. The protonation constants of the complexes were determined potentiometrically in THF:water (60:40) medium at $25^{\circ}C$ and ionic strength ${\mu}=0.1\;M$ ($NaClO_4$). Antibacterial activities in vitro were performed against Staphylococcus aureu and Escherichia coli. Antifungal activities were studied against Aspergillus Niger and Trichoderma. The effect of the metal ions and stabilities of complexes on antimicrobial activities are discussed.

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization (불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향)

  • Kyeong Nan, Kim;Seok Chang, Kang;Geunjae, Kwak
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.

Synthesis and Spectroscopic Characterization of Manganese(II), Iron(III) and Cobalt(III) Complexes of Macrocyclic Ligand. Potential of Cobalt(III) Complex in Biological Activity

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.919-925
    • /
    • 2011
  • A new series of manganese(II), iron(III) and cobalt(III) complexes of 14-membered macrocyclic ligand, (3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine) have been prepared and characterized by elemental analyses, IR, UV-VIS, $^1H$- and $^{13}C$- NMR spectra, magnetic susceptibilities, conductivities, and ESR measurements. Molar conductance measurements in DMF solution indicate that the complexes are electrolytes. The ESR spectrum for cobalt(III) complex in $CD_3OD+10%D_2O$ after exposure to $^{60}Co-{\gamma}$-rays at 77 K using a 0.2217 M rad $h^{-1}$ vicrad source showed $g_{\perp}$ > $g_{\parallel}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_z2$ orbital with covalent bond character. In this case, the ligand hyperfine tensors are nearly collinear with ${\gamma}$-tensors, so there is no major tendency to bend. Therefore, little extra delocalization via the ring lobe of the $dz^2$ orbital occurs. However, the ESR spectrum in solid state after exposure to $^{60}Co-{\gamma}$-rays at 77 K showed $g_{\parallel}$ > $g_{\perp}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_x2_{-y}2$ ground state as the resulting spectrum contains a large number of randomly oriented molecules provided that, the principle directions of g and A tensors. Manganese (II) complex 2, $[H_{12}LMn]Cl_4.2H_2O$, showed six isotropic lines characteristic to an unpaired electron interacting with a nucleus of spin 5/2, however, iron(III) complex 3, $[H_{12}LFe]Cl_5.H_2O$, showed spectrum of a high spin $^{57}Fe$ (I=1/2), $d^5$ configuration. The geometry of these complexes was supported by elemental analyses, IR, electronic and ESR spectral studies. Complex 1 showed exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Studies on the Michael Addition Reaction between Secondary Amino Groups on the Silica Surface with Poly(ethylene glycol) Diacrylates (실리카 나노입자 표면에 결합된 2차 아미노기와 Poly(ethylene glycol) Diacrylate의 마이클 부가반응에 대한 연구)

  • Jeon, Ha Na;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.822-830
    • /
    • 2012
  • We used dipodal type bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify silica nanoparticles to introduce secondary amino groups on the silica surface. These N-H groups were reacted with three different molecular weights (M.W. = 258, 575, and 700) of poly(ethylene glycol) diacrylates to introduce different attached layer thicknesses on the silica surface by Michael addition reaction. After Michael addition reaction, we used several analytical techniques such as fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state $^{13}C$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy to characterize introduced structures. We found almost complete Michael addition reaction of both two acrylate groups of PDGDA with N-H groups of BTMA modified silica to form ${\beta}$-amino acid esters. Between equimolar ratio of pure BTMA and pure PEGDA reaction, only one acrylate group of two acrylate groups of PEGDA reacted with N-H groups of pure BTMA to form ${\beta}$-amino acid ester and the other remaining acrylate group can be used to form a polymer later.

A Study on the Preparation of Powder Coatings Containing Halogen-Free Flame Retardant and Fire Safety (Halogen-Free 난연제를 포함하는 파우더 코팅소재 제조 및 화재안전성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young;Kim, Dae-In;Noh, Tae-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2011
  • Halogen free intumescent flame retardants(IFRS), such as the mixture of melamine phosphate(MP) and char forming agents(pentaerythritol(PER), di-pentaerythritol(DiPER), tris(2-hydroxyethyl) isocyanurate(THEIC)), were prepared and characterized. Polypropylene(PP)/$IFR_S$ composites were also prepared in the presence of ethylene diamine phosphate(EDAP) as a synergist and used into flame retardant PP powder coatings. Thermoplastic PP powder coatings at 20 wt% flame retardant loading were manufactured by extruded and then mechanical cryogenic crushed to bring them in fine powder form. These intumescent flame retardant powder coatings($IFRPC_S$) were applied on mild steel surface for the purpose of protection and decorative. It is a process in which a $IFRPC_S$ particles coming in contact with the preheated mild steel surface melt and form a thin coating layer. The obtained MP flame retardant was analyzed by utilizing FTIR, solid-state $^{31}P$ NMR, ICP, EA and PSA. The mechanical properties as tensile strength, melt flow index(MFI) and the thermal property as TGA/DTA and the fire safety characteristics as limiting oxygen index(LOI), UL94 test, SEM were used to investigate the effect of $IFRPC_S$. The experimental results show that the presence of $IFR_S$ considerably enhanced the fire retardant performances as evidenced by the increase of LOI values 17.3 vol% and 32.6 vol% for original PP and $IFRPC_S$-3(PP/MP-DiPER/EDAP), respectively, and a reduction in total flaming combustion time(under 15 sec) in UL94 test of $IFRPC_S$. The prepared $IFRPC_S$-3 have good comprehensive properties with fire retardancy 3.2 mm UL94 V-0 level, LOI value 32.6%, tensile strength $247.3kg/cm^2$, surface roughness Ra $0.78{\mu}m$, showing a better application prospect. Through $IFRPC_S$-2(PP/MP-PER/EDAP) and $IFRPC_S$-3 a better flame retardancy than that of the $IFRPC_S$-1(PP/MP/EDAP) was investigated which was responsible for the formed more dense and compact char layer, improved synergy effect of MP and PER/DiPER.