• Title/Summary/Keyword: Solid Rocket Propulsion

Search Result 302, Processing Time 0.021 seconds

Developing Trend of Clean Propellants (청정 추진제 개발 동향)

  • Kim In-Chul;Ryoo Baek-Neung;Kim Chang-Kee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.5-8
    • /
    • 2005
  • In this report the developing trends of several clean and green propellants have been summarized. A low-acid clean propellant has been developed, which substantially reduced the content of hydrochloric acid(HCl) in the solid rocket exhaust. Although the chlorine-free approach is now preferred, this technology has not been proved yet. Another acid suppression effect of Magnalium(Mg-Al Alloy) was investigated. Reports says that the concentration of HCl could be reduced to approximately one-fifth of conventional propellant. Many 'green' propellants with low toxicity are being developed for next-generation post-boost propulsion systems, in which combustion research on the Al or Mg fine metal particles with hot steam in various stoichiometric conditions are being performed.

  • PDF

Conceptual Design Study of Two-Stage Hypersonic Scramjet Vehicle (2단 초음속 스크램제트 비행체의 개념설계 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Yang, Soo-Seok;Park, Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • In this study, two-stage hypersonic scramjet vehicle was designed for the flight condition of Mach number 6. In order to launch at sea level, two stage concept was applied. The first stage of the vehicle is solid rocket-powered and is mounted under the second stage. The second stage is powered by scramjet propulsion system and gas wings. The suggested mission scenario is to deliver 0.2 ton payload to the range of 2,000 km. For the first step of conceptual design, trajectory of air vehicle was calculated by 3-DOF trajectory code. Based on the result of trajectory code, scramjet engine design and mass estimation were performed by non-equilibrium nozzle flow code and NASA's HASA model, respectively. In order to find best solution, all steps of designing process was iterated until they was reached.

Prediction of the Mechanical Erosion Rate Decrement for Carbon-Composite Nozzle by using the Nano-Size Additive Aluminum Particle (나노 알루미늄 입자 첨가 추진제에 의한 탄소복합재 노즐의 기계적 삭마 감소 특성 예측)

  • Tarey, Prashant;Kim, Jaiho;Levitas, Valeny I.;Ha, Dongsung;Park, Jae Hyun;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.42-53
    • /
    • 2015
  • In this study, the influence of Al particle size, as an additive for solid propellant, on the mechanical erosion of the carbon-composite nozzle was evaluated. A new model which can predict the size and distribution of the agglomerated reaction product($Al(l)/Al_2O_3(l)$) was established, and the size of agglomerate were calculated according to the various initial size of Al in the solid propellant. With predicted results of the model, subsequently, the characteristics of mechanical erosion on the carbon-composite nozzle was estimated using a commercial CFD software, STAR CCM+. The result shows that the smaller the initial Al particles are, in the solid propellant, the lower is the mechanical erosion rate of the composite nozzle wall, especially for the nano-size Al particle.

A Study on the Formulation and Mechanical Properties of AN-based Composite Solid Propellant for an Application to Gas Generators (기체발생기용 질산암모늄 산화제 기반 복합고체추진제의 조성 및 기계적 물성)

  • Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

A Study on the Local Regression Rate of Solid Fuel in Hybrid Rocket (하이브리드 로켓에서의 고체연료의 국부 후퇴율에 관한 연구)

  • Kim, Soojong;Lee, Jungpyo;Kim, Gihun;Cho, Jungtae;Kim, Hakchul;Woo, Kyoungjin;Moon, Heejang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • In generally, the regression rate was expressed with average value and oxidizer mass flux in hybrid propulsion system. This can not represent the local value of regression rate along with oxidizer flow direction. In this study, experimental studies were performed with Separation method and Cutting method for measure local regression rate. In axial injection, the local regression rate decreases rapidly with axial location near entrance and increases with axial direction from the leading edge and the empirical formula for local regression rate with function of oxidizer mass flux and location was derived. Swirl injection regression rate has higher value at the leading edge of the fuel and comparatively uniform regression rate at the downstream. Overall regression rate of swirl injection is higher increased about 54 % than regression rate of axial injection.

  • PDF

A Study on the Influence Factors for Ablation Rate of Graphite Nozzle Throat Insert (흑연 노즐목 삽입재의 삭마율에 미치는 영향 인자 연구)

  • Hahm, Heecheol;Kang, Yoongoo;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.12-20
    • /
    • 2017
  • The ablation characteristics of graphite nozzle throat insert was analyzed for the use in solid rocket propulsion system. The propulsion system was composed of three types of conventional nozzles, such as De-Laval type, blast tube type, and submerged type. Various kinds of propellants were used in ten kinds of propulsion system that had different shapes with each other. Total forty eight tests were performed. From the results of the analysis, it was found that the ablation rate was increased for the higher average chamber pressure and the higher oxidizer mole fraction. A useful correlation for nozzle throat ablation rate was developed in terms of the chamber pressure, oxidizer mole fraction, and throat size. The calculated ablation rates from the correlation showed agreement within ${\pm}0.10mm/s$ with the experimentally determined values.

Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method (Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구)

  • Choi, Jong-Ho;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • The present paper describes a mathematical modeling and simulation of the separation of a solid rocket booster from an air breathing engine vehicle. The vehicle and booster are considered as a multi-connected body and the booster is assumed to move only along the axial direction of the vehicle. The dynamic motion of the vehicle and the booster were modeled by using Kane's method. The aerodynamic forces on the whole system along various positions of booster were calculated by using DATCOM software and the internal pressure force acting on the effective surface during separation was simply calculated with gas dynamics and Taylor MacColl equation. Numerical simulation was done by using Mathworks-Matlab. From the result, the variation of Mach number and angle of attack are not large during the separation, so the variation of pitch angle and the characteristics of inlet flow for varying the Mach number and angle of attack during the separation test can be identified as neglectable values.

Rupture Prediction of the Rupture Disk Using Elasto-Plastic Analysis (탄소성해석을 이용한 파열판의 파열예측)

  • Han, Houk-Seop;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Rupture disks are a kind of safety device in high pressure equipment and they are used to control rupture pressure in the solid rocket motor. In this paper, a series of rupture experiments was performed using rupture disks made of AISI 316L and rupture pressure of rupture disks was calculated through various assumptions in relation between elasto-plastic material properties and true stress-strain curve. Experiment and FEA indicated rupture pressure is determined by size of rupture disks. As a result of elasto-plastic analysis, only multi-linear stress-strain curve was able to calculate meaningful estimations. Experimental results also showed rupture location are decided by the size of rupture disks. Experimental and FEA results will be applied to control rupture pressure of disks.

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF