• Title/Summary/Keyword: Solid Motor Nozzle

Search Result 72, Processing Time 0.028 seconds

An Effective Pivot Trace Algorithm for Movable Nozzle using Neural Network (신경망을 적용한 가동노즐의 유효 피봇 추적 알고리즘)

  • Kim Joung-Keun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.73-80
    • /
    • 2005
  • In general, the performance of movable nozzle used for thrust vector control in solid rocket motor is estimated on the basis of the effective pivot of nozzle. However, it is nearly impossible to define the exact effective pivot by the mathematical model or experimental technique owing to pivot dynamics. In this paper, pivot dynamic properties were investigated by ADAMS simulation technique and trajectory of the exact effective pivot was modelled by the artificial neural network. Comparison of the proposed method was made with the virtual movable nozzle (computer simulation) to verify the method, and showed good agreement. Therefore, the proposed method will be applicable to predict the effective pivot of movable nozzle during bench or ground test.

A study on steady state performance of variable thrust nozzle by cold-flow test (공압시험을 이용한 추력가변 노즐의 정상상태 성능 연구)

  • Kim, Jung-Keun;Lee, Ji-Hyung;Oh, Jong-Yun;Chang, Hong-Been;Kim, Shin-Hoe
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.289-294
    • /
    • 2007
  • Solid Rocket Motor(SRM) has advantages such as - high specific impulse, operational safety and simplicity in design and manufacturing process, but thrust magnitude can't be controlled. For studying of pintle nozzle that can control the thrust magnitude of SRM, cold flow test and numerical analysis about needle type pintle shape were performed and results were presented in this paper. As the results of this study, pintle tip's shape and nozzle contour were important design parameters because thrust performance and variable thrust range of pintle nozzle depend on them. Especially, the thrust of needle typed pintle nozzle adopted in this test was predicted 13% higher than normal nozzle without pintle.

  • PDF

Thrust performance at the various pintle shapes and positions (핀틀 형상 및 위치에 따른 추력 성능)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Jang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.89-93
    • /
    • 2008
  • The effect of pintle shapes and position to the thrust performance of Solid Rocket Motor was studied by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS in Fluent, Spalart-Allmaras model was better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. When nozzle throat area was decreased, magnitude of thrust was increased. The bigger pintle size was, the more thrust of pintle tip pressure was obtained. Meanwhile the more thrust of nozzle and chamber pressure decreased. Hence, total thrust of big pintle was less than a small pintle under same throat area condition.

  • PDF

The stydy on determination method of initial optimal nozzle expansion ratio in pintle solid rocket motor (핀틀 로켓의 초기 최적 노즐 팽창비 결정 방법 연구)

  • Kim, Joung-Keun;Lee, Young-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.744-749
    • /
    • 2011
  • In this study, determination method of initial optimal nozzle expansion in pintle rocket was investigated. The initial optimal initial nozzle expansion was decided by maximizing the mass-averaged thrust coefficient that is calculated from thrust coefficient of minimum and maximum chamber pressure. The determination of initial optimal initial nozzle expansion was equivalent to that of the minimum propellant mass which was required for obtaining the desired mission performance. The highest pressure, thrust turndown ratio and total impulse ratio effected on the initial optimal nozzle expansion. Among them, total impulse ratio had great influence on the initial optimal nozzle expansion.

A study on internal flow field of supersonic nozzle by needle type pintle position (Needle형 Pintle의 위치에 따른 초음속 노즐 내부 유동장 연구)

  • Lee, Ji-Hyung;Kim, Jung-Keun;Chang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • Internal flow field of supersonic nozzle with pintle, which control thrust of solid rocket motor, is very complicated by pintle tip shape and contour of nozzle. For studying of pintle nozzle performance by effects of internal flow field variation with pintle position, cold flow test and numerical analysis about needle type pintle shape were performed and results were presented in this paper. As the results of this study, three types of internal shocks exists in the pintle nozzle and oblique shock is oscillated by pintle position

  • PDF

Effects of Solid Propellant Cases on the Thermal Response of Nozzle Liner (노즐 내열재 열반응에 미치는 고체 추진제 연소가스의 영향)

  • Hwang, Ki-Young;Yim, Yoo-Jin;Ham, Hee-Cheol;Kang, Yoon-Goo;Bae, Joo-Chan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.26-36
    • /
    • 2007
  • The thermal response characteristics of nozzle liner for a solid rocket motor applying highly aluminized PCP or HTPB propellant with slotted tube grain have been investigated. The SEM photographs of aluminum oxide particles taken from nozzle liner show that the PCP propellant with the finer and less contents of oxidizer can offer greater possibility for increasing aluminum agglomeration than the HTPB propellant. The PCP propellant shows locally greater mechanical erosion at 4 circumferential areas of the nozzle entrance in line with grain slot due to the impingement of large particles, but the HTPB propellant shows greater thermochemical ablation at the nozzle blast tube, the throat insert and the exit cone because of relatively much more mole fraction of $H_2O\;and\;CO_2$ in combustion gases.

A study of unsteady characteristics on the pintle nozzle (핀틀 노즐의 비정상 특성연구)

  • Lee, Ji-Hyung;Chang, Hong-Been;Ko, Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.662-665
    • /
    • 2011
  • Pintle technology, which is one of the thrust control method for solid rocket motor, can control the thrust by the control of nozzle throat area through the pintle moving. For studying the unsteady flow characteristics of pintle nozzle by needle type pintle moving, cold flow test and numerical analysis were performed. The pressure distribution on the pintle tip was varied for pintle moving and stopping and thrust was varied by this effects.

  • PDF

Visualization of Internal Flows in Sub-scaled Wall Injection Test model of SRM (고체로켓모터의 축소형 표면분사 시험모델에서의 내부유동 가시화)

  • Kim, Do-Hun;Cho, Yong-Ho;Lee, Yeol;Koo, Ja-Ye;Kim, Yoon-Gon;Kang, Moon-Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.225-227
    • /
    • 2011
  • The geometrically sub-scaled wall-injection test model was employed to visualize interactions of internal flow of a solid rocket motor equipped fin/slot grain and submerged nozzle. Symmetric vortex and circumferential flow patterns were visualized.

  • PDF

Numerical Studies on Flow Structures with Various Shapes of Needle-type Pintle in Solid Rocket Motor (Needle 형 pintle 형상에 따른 고체 로켓 모터 내부 유동장의 수치적 연구)

  • Park, Byung-Hoon;Kim, Sang-Min;Yoon, Woong-Sup;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.249-252
    • /
    • 2011
  • 고체로켓추진기관의 추력조절을 위해 핀틀 기술이 사용된다. 아직까지 핀틀 유동에 대해 근본적인 물리적 이해를 돕는 연구가 공개되지 않아, 이 연구에서 다양한 형상의 needle형 핀틀에 따른 유동구조에 대한 수치적 연구를 진행하였다. 2차원 축대칭, 압축성을 고려하여, 상용 열유체 해석 프로그램인 FLUENT 6.2를 사용하여 해석을 수행하였다. 난류 모델을 검증하기 위해 기 수행된 실험 결과와 비교하였다. 핀틀 각도(tip angle)가 작아질수록 노즐에서 유동 박리점이 하류로 이동하며, 핀틀에서 발생하는 끝단 충격파가 약해진다. 핀틀 반경(tip radius)이 작아질수록 핀틀에서 발생하는 끝단 충격파가 하류로 이동하며, 크기는 약해진다. 핀틀 형상(contour)은 유동 박리 지점에 직접적인 영향을 미친다.

  • PDF

Prediction of Erosion Rate in Passages of a Turbine Cascade with Two-Phase flow (터빈익렬 유로에서 2상 유동에 따른 삭마량 예측)

  • Yu, Man Sun;Kim, Wan Sik;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.301-308
    • /
    • 1999
  • The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide ($Al_2O_3$) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle.

  • PDF