• Title/Summary/Keyword: Solid Geometry

Search Result 277, Processing Time 0.026 seconds

Grazing Incidence X-ray Diffraction (GIXRD) Studies of the Structure of Si$_{1-x}Ge_x$/Si Surface Alloy

  • Shi, Y.;Zhao, R.;Jiang, C.Z.;Fan, X.J.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.84-87
    • /
    • 2002
  • The Si$_{1-x}$ Gex/Si surface alloy (x = 0.3, 0.4 and 0.5), which are prepared by solid source MBE and have the SiGe epilayer thickness of 50$\AA$, are annealed with different parameters. The surface structure analyses of the heterostructure samples are made on a triple-axis X-ray diffractometer in grazing incidence X-ray diffraction (GIXRD) geometry. It has been found that with different annealing time (1.5h, 18h, 64h) and annealing temperature (550 $^{\circ}C$, 750 $^{\circ}C$), the SiGe epilayer experienced different strain relaxation process, which was deduced from the GIXRD measurements of the in-plane (220) diffraction peak of Si(001) substrate and the relevant (220) surface diffraction of SiGe epilayer. The results show that the stress relieving and the lateral strain relaxation in the SiGe/Si heterostructure can be promoted by correct annealing, which is very helpful for the preparation of SiGe/Si strained superlattice with fine strain crystallization..

  • PDF

Development of Pre- and Post-processing System for Supercomputing-based Large-scale Structural Analysis (슈퍼컴퓨팅 기반의 대규모 구조해석을 위한 전/후처리 시스템 개발)

  • Kim, Jae-Sung;Lee, Sang-Min;Lee, Jae-Yeol;Jeong, Hee-Seok;Lee, Seung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.123-131
    • /
    • 2012
  • The requirements for computational resources to perform the structural analysis are increasing rapidly. The size of the current analysis problems that are required from practical industry is typically large-scale with more than millions degrees of freedom (DOFs). These large-scale analysis problems result in the requirements of high-performance analysis codes as well as hardware systems such as supercomputer systems or cluster systems. In this paper, the pre- and post-processing system for supercomputing based large-scale structural analysis is presented. The proposed system has 3-tier architecture and three main components; geometry viewer, pre-/post-processor and supercomputing manager. To analyze large-scale problems, the ADVENTURE solid solver was adopted as a general-purpose finite element solver and the supercomputer named 'tachyon' was adopted as a parallel computational platform. The problem solving performance and scalability of this structural analysis system is demonstrated by illustrative examples with different sizes of degrees of freedom.

Investgation on the Relationships between the Surface Roughness and Film Evaporation (표면거칠기와 액막 증발에 관한 상관 관계 고찰)

  • Kim, Kyun-Seok;Kim, Ig-Saeng;Yoo, Byoung-Hoon;Kim, Do-Hyung;Kim, Chun-Dong;Choi, Ko-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.272-279
    • /
    • 2001
  • The objective of this paper is the investigation of the relationships between the surface roughness and film evaporative characteristics of the surface. For example, when the droplet of liquid is in contact with the solid surface, its behavior strongly depends on the surface characteristics. The material properties and geometry - profile shape, waviness, roughness - of the surfaces have strongly influenced on the wettability of the droplet. To investigate the effect of the surface roughness on the film evaporation, firstly, the characteristics of wettabilities were studied according to contact angle and surface tree energy of specimens with various roughness heights. Secondly, the experimental test were carried out on capacities of the tubes diversly roughened by using different kinds of emery papers. Finally, the relationships between the film evaporation characteristics and surface roughness were explained by means of the correlation of contact angle and surface free energy with surface roughness and the influences of surface tree energy on the heat transfer performance.

  • PDF

Extracting Building Element Geometry from BIM/IFC Physical Files (BIM/IFC 파일로부터 건물요소의 형상모델 추출에 관한 연구)

  • Goh, Il-Du;Choi, Joong-Hyun;Kim, E-Doo;Lee, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.163-172
    • /
    • 2009
  • BIM technologies based on three-dimensional parametric solid modeling can provide building industries with a wide range of information, and then enable not only to automate architectural drawings, detect clashes between building components, and estimate building materials, but also to manage effectively architectural and engineering information about building spaces, structures, energy, just-in-time delivery, facility management, and code checking. This paper presents an implementation to extract geometric data from IFC files, and validates the system with simple and complex buildings.

A Study on Mixing Expression Methods of Finish Materials for Visual Differentiation in Housing Space (주거공간의 시각적 차별화를 위한 마감재 혼합적 표현방법 연구)

  • Seo, Ji-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.2
    • /
    • pp.147-155
    • /
    • 2011
  • The purpose of this study is to grope for plan methods through analyzing preferences on expression methods of materials for visual differentiation in hosing space. The results are as follows : First, we could know that finish material is the important element to make differential design in housing space. It is a effective method to use the color and material of finish materials. Second, we could find they preferred woods in materials and Y color, N9.5, bright and light in colors through grasping preference about types in material elements. The preferred texture is soft and the preferred patterns are solid and geometry. Third, it is a good method to mix materials which give us different season feeling, and to mix colors which are different tones to lead the differential design by materials in housing space. In case texture and patterns, what we mix similar things is the effective method. Fourth, preference of the expression method is manifested differently depending on the selected elements. so when we plan the housing, we have to consider that. lastly, I think this study will be a basic data on a study to differentiate the design of the residential space.

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

An Integrated Database of Engineering Documents and CAD/CAE Information for the Support of Bridge Maintenance (교량 유지관리 지원을 위한 CAD/CAE 정보와 엔지니어링 문서정보의 통합 데이터베이스)

  • Jeong Y.S.;Kim B.G.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.183-196
    • /
    • 2006
  • A new operation strategy. which can guarantee the data consistency of engineering information among the various intelligent information systems, is presented for engineering information of bridges, and construction methodology of integrated database is developed to support the strategy. The two core standard techniques are adopted to construct the integrated database. One is the Standard for the Exchange of Product Model Data (STEP) for CAD/CAE information and the other is the Extensible Markup Language(XML) for engineering document information. The former enabler structural engineers to handle the structural details with three-dimensional geometry-based information of bridges, and ACIS solid modeling kernel is employed to develop AutoCAD based application modules. The latter can make document files into data type for web-based application modules which assist end-users to search and retrieve engineering document data. In addition, relaying algorithm is developed to integrate the two different information, e.g. CAD/CAE information and engineering document information. The pilot application modules are also developed, and a case study subjected to the Han-Nam bridge is presented at the end of the paper to illustrate the use of the developed application modules.

Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster

  • Lee, Choong-Keun;Park, Sun-Kyung;Min, Kyung-Chul;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1951-1959
    • /
    • 2008
  • Pentamer cluster of azodicarbonamide (ADA) based on the crystalline structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties at various levels of the density functional theory. Stretching force constants of N${\cdot}{\cdot}{\cdot}$H or O${\cdot}{\cdot}{\cdot}$H, and angle-bending force constants of N-H${\cdot}{\cdot}{\cdot}$N or N-H${\cdot}{\cdot}{\cdot}$O for intermolecular hydrogen bonds in the pentamer cluster were obtained in 0.2-0.5 mdyn/$\AA$ and 1.6-2.0 mdyn$\AA$, respectively. The geometry of central ADA molecule fully hydrogen bonded with other four molecules shows good coincidence to the crystalline structure except the bond distances of N-H. Calculated Raman and infrared spectra of central ADA molecule in cluster represent well the experimental spectra of ADA obtained in the solid state compared to a single molecule. Detailed structural and vibrational properties of central ADA molecule in the pentamer cluster are presented.

NUMERICAL INVESTIGATION OF THE FLOW IN A MICRONOZZLE FOR SEAL DISPENSER (밀봉제 도포용 마이크로 노즐 설계를 위한 유동해석)

  • Park, G.J.;Kwak, H.S.;Sohn, B.C.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.236-242
    • /
    • 2007
  • A theoretical and numerical investigation is performed on the flow in a micronozzle for precision-controlled seal dispenser. The working fluid is a highly viscous epoxy used as sealant in producing LCD panels, which contains a number of tiny solid spacers. Flow analysis is conducted in order to achieve the optimal design oj internal geometry of a nozzle. A simplified design analysis methodology is proposed for predicting the flow in the nozzle based on the assumption that the Reynolds number is much less than O(1). The parallel numerical computations are performed by using a CFD package FLUENT. Comparison discloses that the theoretical model gives a good prediction on the distribution of pressure and wall shear stress in the nozzle. However, the theoretical model has a difficulty in predicting the maximum wall shear stress as found in a limited region near edge by numerical computation. The theoretical and numerical simulations provide the good guideline for designing a dispensing micronozzle.

  • PDF

Numerical Study on Bubble Growth and Droplet Ejection in a Bubble Inkjet Printer (버블 잉크젯에서의 기포성장 및 액적분사에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1107-1116
    • /
    • 2006
  • The droplet ejection process driven by an evaporating bubble in a thermal inkjet printhead is investigated by numerically solving the conservation equations for mass, momentum and energy. The phase interfaces are tracked by a level set method which is modified to include the effect of phase change at the interface and extended for multiphase flows with irregular solid boundaries. The compressibility effect of a bubble is also included in the analysis to appropriately describe the bubble expansion behaviour associated with the high pressure caused by bubble nucleation. The whole process of bubble growth and collapse as well as droplet ejection during thermal inkjet printing is simulated without employing a simplified semi-empirical bubble growth model. Based on the numerical results, the jet breaking and droplet formation behaviour is observed to depend strongly on the bubble growth and collapse pattern. Also, the effects of liquid viscosity, surface tension and nozzle geometry are quantified from the calculated bubble growth rate and ink droplet ejection distance.