• Title/Summary/Keyword: Solid Element

Search Result 975, Processing Time 0.031 seconds

Development of Seismic Analysis Technique for Masonry Structure (조적식 교각의 내진해석 기법 개발)

  • 정용철;배준현;이준석;강영종
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.171-176
    • /
    • 2002
  • There are many railway structures which were designed without conidering aseismic capacity. In special, masonry structures constructed long time ago should be reviewed about their resistance to earthquake. In this paper, technique to evaluate the capacity of masonry railway bridge is tried to develop by means of FEM analysis. In general FEM analysis program, 3-D solid element is used for masonry structures and response spectrum analysis procedure is tried. In addition, 3-D solid element has material properties equivalent to mortar-brick composite body. Used FEM program is ABAQUS-CAE.

  • PDF

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

ANALYSIS OF LOW-VELOCITY IMPACT ON COMPOSITE SANDWICH USING A SOLID ELEMENT (솔리드 요소를 이용한 복합재 샌드위치의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.170-173
    • /
    • 2001
  • Low-velocity impact on composite sandwich panel has been investigated. For the study, a finite element program is coded using 18-node assumed strain solid element and Newmark-beta method. Contact force is calculated from a proposed modified contact low. The finite element code is verified by solving typical example. The calculated impact behavior agreed well with experimental result.

  • PDF

Forced Vibration Analysis of a Hollow Crankshaft by using Transfer Matrix Method and Finite Element Method (전달 행렬법과 유한요소법을 이용한 중공 크랭크축의 강제 진동 해석)

  • 김관주;최진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.44-52
    • /
    • 1997
  • As part of the effort to reduce the weight of powertrain, a hollow crankshaft has been designed. The mass reduction of the crankshaft changes the dynamic properties of the crankshaft such as moment of inertia, and torsional, bending stiffness. The purpose of this paper is to compare the dynamic behavior of the hollow crankshaft with that of the original, solid crankshaft. Global dynamic behavior of the crankshaft is analyzed bgy the transfer matrix method(TMM). The crankshaft has been modeled by 38 lumped mass and stiffness elements. The dynamic patameters of each lumped element are provided by Finite Element Method(FEM). The responses of the crankshaft from TMM are fed back as loading conditions to the Finite Element model to obtain dynamic stresses for critical areas of the crankshaft.

  • PDF

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin;Kim, San
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.379-393
    • /
    • 2020
  • In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

Finite element analysis of shear critical prestressed SFRC beams

  • Thomas, Job;Ramaswamy, Ananth
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interface. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

The Dynamic Characteristics and Defect Analysis of Pressurized Water Reactor Internals (원자로 내부구조물의 동특성 및 결함해석)

  • Ahn, Chang-Gi;Park, Jin-Ho;Lee, Jeong-Han;Chae, Young-Chul;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • Finite element model of pressurized water reactor internals were obtained using ANSYS software package to analyze dynamic characteristics. The pressure vessel, hold-down ring, alinement key, core support barrel(CSB), upper guide structure(UGS) and fluid gap were fully modeled using structural solid element(SOLID45) and fluid element(FLUID80) which is one of element types. Also modal analysis using the above finite element model has been performed. As a result, it was found that the fundamental beam mode natural frequency of the CSB were 8.2 Hz, the shell mode one 14.5 Hz. To verify the Finite Element Analysis(FEA), we compare the analysis result with experimental data that is obtained from the plant IVMS(internal Vibration Monitoring System). The experimental results are good agreement with the FEA model.

  • PDF

Deformation Analysis of Semi-Solid Aluminum Material Considering Seperation Phenomena of Solid Particles (고상입자의 분리현상을 고려한 Semi-Solid 알루미늄재료의 변형해석)

  • 최진석;강충길;김기훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.98-105
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can very from dendritic to globular. The estimation of behaviour characteristic in the compression simulation with seim-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for compression process is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process considering soldification phenomena is performed to the isothermal conditions of two dimensional problems. To analysis of compression process by using semi-solid materials, a new stress-strain relationship is described, and compression analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for compression force and ram displacement will be compared to experimental data.

  • PDF

Finite element analysis of elastic solid/Stokes flow interaction problem

  • Myung, Jin-Suk;Hwang, Wook-Ryol;Won, Ho-Youn;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.233-242
    • /
    • 2007
  • We performed a numerical investigation to find out the optimal choice of the spatial discretization in the distributed-Lagrangian-multiplier/fictitious-domain (DLM/FD) method for the solid/fluid interaction problem. The elastic solid bar attached on the bottom in a pressure-driven channel flow of a Newtonian fluid was selected as a model problem. Our formulation is based on the scheme of Yu (2005) for the interaction between flexible bodies and fluid. A fixed regular rectangular discretization was applied for the description of solid and fluid domain by using the fictitious domain concept. The hydrodynamic interaction between solid and fluid was treated implicitly by the distributed Lagrangian multiplier method. Considering a simplified problem of the Stokes flow and the linearized elasticity, two numerical factors were investigated to clarify their effects and to find the optimum condition: the distribution of Lagrangian multipliers and the solid/fluid interfacial condition. The robustness of this method was verified through the mesh convergence and a pseudo-time step test. We found that the fluid stress in a fictitious solid domain can be neglected and that the Lagrangian multipliers are better to be applied on the entire solid domain. These results will be used to extend our study to systems of elastic particle in the Stokes flow, and of particles in the viscoelastic fluid.

Data Structure for the Design Program of Solid Rocket Motors (고체 추진기관 구조체 설계 프로그램 개발을 위한 설계 부품 자료 구조)

  • Lee, Kang-Soo;Kim, Won-Hoon;Lee, Bang-Eop
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.364-374
    • /
    • 2012
  • In this paper, we proposed a data structure to represent structural components of solid rocket motors (SRM) in an automated design program. To propose the data structure, we searched the necessary functions for the automated design program should have. In order to design the structural components of solid rocket motors sufficiently with a design program, it should have the functions to represent the shapes of the components, the drawing and analysis models, the design variables, various product structures, interferences, characteristic properties, design equations, and tightening sets. By modifying the data structure of an element object that is a general purpose data structure to represent a general component of a product, a new data structure was proposed to satisfy all the necessary functions with optimum. Finally, a design program for the structural components of solid rocket motors was developed successfully with the proposed data structure.