• Title/Summary/Keyword: Solid Element

Search Result 975, Processing Time 0.034 seconds

Safety Evaluation of Horizontal and Vertical Bolted Connection between PHC Piles Using Finite Element Analysis (유한요소해석을 통한 수평 및 수직볼트로 체결된 PHC 파일 연결부의 안전성 평가)

  • Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The safety evaluation of horizontal and vertical bolted connection between PHC piles is presented. The numerical analysis model is constructed using the commercial finite element program, ABAQUS, in which 3D solid element is used to model all the connection devices. The actual bolted connection is idealized by the contact and tie condition given in ABAQUS. Through the finite element analysis, the compression, tensile, bending and shear behaviors of PHC pile connection were analyzed. The safety factor based on Von-Mises and yield stress was calculated for the safety evaluation of each connection devices.

Analysis of filament Wounded Composite Rocket Motor (필라멘트 와인딩 복합재료 연소관의 구조적 안정성 연구)

  • Lee Yoon-kyu;Kwon Tae-hoon;Lee Won-bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.278-281
    • /
    • 2004
  • The purpose of this paper is to show a reliable analytical method to predict the deflections of F/W Composite Motor Case. Structural analysis and testing of a Carbon/Epoxy Composites Motor Case for Pressure Loadings were performed. This paper presents the development of 3-D layered axi-symmetric solid element for finite element analysis. Finite element analyses were preformed considering fiber angle variation in longitudinal and thickness direction by ANSYS. The analytical results agree well with experimental results.

  • PDF

Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements (3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구)

  • Oh, Jung-Sik;Kim, Yooil;Jeon, Seok-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

Effects of Stirring Condition and Refining Element Addition on the Primary Si Particle Morphology of Hypereutectic Al-Si Alloys Semi-Solid State Processing (과공정 Al- Si 합금의 반응고 교반시 초정 Si 형상에 미치는 교반조건 및 개량원소 첨가 영향)

  • Kim, In-Joon;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • Microstructural characteristics of semi-solid state processed hypereutectic Al-Si alloys have been investigated. Main concern of the present study is to investigate the effects of P and Sr addition on the size and morphology change of the primary Si particles. Refinement of the primary Si particles was observed with the addition of P and Sr at the early stage of semi-solid state processing, but such a refining effects became negligible resulting in Si particles with a near-spherical morphology with continuous stirring. This implies that the microstructural transformation mechanism became more dependent to stirring effects than to the alloying effects during semi-solid state processing. Brittle fracture and agglomeration were proposed as the mechanisms for microstructural alterations during semi-solid state processing.

  • PDF

Effects of Density Change and Cooling Rate on Heat Transfer and Thermal Stress During Vertical Solidification Process (수직응고 시스템에서 밀도차와 냉각률이 열전달 및 열응력에 미치는 영향)

  • 황기영;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1095-1101
    • /
    • 1995
  • Numerical analysis of vertical solidification process allowing solid-liquid density change is performed by a hybrid method between a winite volume method (FVM) and a finite element method (FEM). The investigation focuses on the influence of solid-liquid density change and cooling rates on the motion of solid-liquid interface, solidified mass fraction, temperatures and thermal stresses in the solid region. Due to the density change of pure aluminium, solid-liquid interface moves more slowly but the solidified mass fraction is larger. The cooling rate of the wall is shown to have a significant influence on the phase change heat transfer and thermal stresses, while the density change has a small influence on the motion of the interface, solidified mass fraction, temperature distributions and thermal stresses. As the cooling rate increases, the thermal stresses become higher at the early stage of a solidification process, but it has small influence on the final stresses as the steady state is reached.

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.

Analysis of Three Dimensional Crack Growth by Using the Symmetric Galerkin Boundary Element Method

  • Kim, Tae-Soon;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • In order to analyze general three dimensional cracks in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear is used. A crack is modelled as distribution of displacement discontinuities, and the governing equation is formulated as singularity-reduced integral equations. With the proposed method several example problems for three dimensional cracks in an infinite solid, as well as their growth under fatigue, are solved and the accuracy and efficiency of the method are demonstrated.

A Study on the Preprocessing for Finite Element Analysis of 3-Dimensional Structures.(With Focus on Geometric Modelling) (3차원 구조물의 유한요소해석 전처리에 관한 연구(기하학적 모델링을 중심으로))

  • 이재영;이진휴;한상기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.40-46
    • /
    • 1990
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierarchical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modeling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modeling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.