• 제목/요약/키워드: Solid Dispersion

검색결과 300건 처리시간 0.028초

Preparation and release characteristics of PVP-based solid dispersion capsules containing solubilizers

  • Cao, Qing-Ri;Kim, Tae-Wan;Choi, Choon-Young;Lee, Beom-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.412.1-412.1
    • /
    • 2002
  • Purpose. To prepare PVP-based solid dispersions containing lovastatin (LOS) and solubilizers (sodium lauryl sulfate. Tween80. oleic acid) to enhance dissolution of practically insoluble LOS. Methods. Solid dispersions containing LOS were prepared by dissolving two different organic solvent systems (acetone/ethanol or acetonitrile/ethanol). Results. The stickiness and flowability of solid dispersion powders were dependent on the composition and ratio of the solubilizers. (omitted)

  • PDF

PVP K30/Eudragit EPO에 의한 셀레콕시브 고체분산체의 용출률 향상 및 특성 (Characterization and Improvement of Dissolution Rate of Solid Dispersion of Celecoxib in PVP K30/Eudragit EPO)

  • 전대연;장지은;이정환;양재원;박상미;임동권;강길선
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.434-440
    • /
    • 2014
  • 셀레콕시브는 높은 결정성을 갖는 난용성 약물로서 이러한 난용성 약물의 용해도를 증진시키기 위해 고체분산법을 바탕으로 한 분무건조기를 이용하여 고체분산체를 제조하였다. PVP K30과 Eudragit EPO를 수용성 담체로 사용하였고 폴록사머 407은 계면활성제로 사용하였다. 제조된 셀레콕시브 고체분산체의 특성을 SEM, DSC, XRD 그리고 FTIR을 이용하여 확인하였다. SEM과 DSC 그리고 XRD를 통하여 셀레콕시브 고체분산체가 무정형임을 알 수 있었다. 제조된 고체분산체는 pH 1.2에서 용출을 실시하였으며 시판제인 Celebres$^{(R)}$ 용출률을 비교하였으며 분무건조를 통해 제조한 고체분산체가 Celebres$^{(R)}$보다 용출률이 크다는 것을 확인하였다.

아세클로페낙 고체분산체의 특성 및 용출률 개선 (Characterization and Improved Dissolution Rate of Aceclofenac Solid Dispersion)

  • 김윤태;박현진;이영현;홍희경;엄신;김용기;이은용;최명규;이재준;조용백;강길선
    • 폴리머
    • /
    • 제33권6호
    • /
    • pp.596-601
    • /
    • 2009
  • 아세클로페낙은 높은 결정성을 갖는 난용성 약물이다. 이러한 난용성 약물의 용해도를 증진시키기 위해서 고체분산법을 바탕으로 한 분무건조기를 이용하여 미립구를 제조하였다. PVP-K30을 수용성 담체로 사용하였고 폴록사머는 계면활성화제로 사용하였다. 제조된 아세클로페낙 고체분산체의 특성을 SEM, DSC, XRD 그리고 FT-IR을 이용하여 확인하였다. SEM, DSC, XRD을 통하여 아세클로페낙 고체분산체가 무정형임을 알 수 있었고 FT-IR을 통하여 아세클로페낙과 PVP-K30간에 수소결합을 통해 염을 형성하고 있다는 것을 확인할 수 있었다. 제조된 미립구는 pH 6.8에서 방출을 실시하였으며 시판제인 $Airtal^{(R)}$과 용출률을 비교하였으며 분무건조를 통해 제조한 미립구가 시판제인 $Airtal^{(R)}$ 보다 용출률이 크다는 것을 확인하였다.

아토르바스타틴 칼슘 고체분산체의 특성화 및 용출율 개선 (Improved Dissolution and Characterization of Solid Dispersed Atorvastatin Calcium)

  • 이준희;구정;박정수;박종학;안식일;모종현;김윤태;이종문;이해방;강길선
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권2호
    • /
    • pp.111-117
    • /
    • 2008
  • To overcome the solubility of poorly water-soluble drug, the formation of solid dispersion using a spray-dryer with polymeric material, that can potentially enhance the dissolution rate extend of drug absorption was considered in this study. $Eudragit^{(R)}$ E100 as carrier for solid dispersion is acrylate copolymer that soluble in acidic buffer solutions (below pH 5.0). It was used to increase dissolution of atorvastatin calcium as a water-insoluble drug in acidic environments. In this study, a spray-dryer was used to prepare solid dispersion of atorvastatin calcium and $Eudragit^{(R)}$ E100 for purpose of improving the solubility of drug. Atorvastatin calcium and $Eudragit^{(R)}$ E100 were dissolved in ethanol and spray-dryed. DSC and XRD were used to analyze the crystallinity of the sample. It was found that atorvastatin calcium is amorphous in the $Eudragit^{(R)}$ E100 solid dispersion. FT-IR was used to analyze the salt formation by interaction between atorvastatin calcium and $Eudragit^{(R)}$ E100. Comparative dissolution study exhibited better dissolution characteristics than the commercial drug ($Lipitor^{(R)}$) as control. The dissolution rate of atorvastatin calcium was markedly increased in solid dispersion system in simulated gastric juice (pH 1.2). This study proposed that this solid dispersion system improved the bioavailability of poorly water-soluble atorvastatin calcium.

Preparation and Characterization of Solid Dispersion of Ipriflavone with Polyvinylpyrrolidone

  • Jeong, Je-Kyo;Kim, Jung-Hoon;Khang, Gil-Son;Rhee, John M.;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권3호
    • /
    • pp.173-179
    • /
    • 2002
  • Solid dispersions of ipriflavone with PVP were prepared by a spray-drying method in order to improve the bioavailability. They were measured with scanning electron microscopy, differential scanning calorimetry, x-ray powder diffraction, and Fourier transform infrared spectroscopy to evaluate the physicochemical interaction between ipriflavone and PVP and study the correlation between these physicochemical characteristics and bioavailability. Ipriflavone exhibited crystallinity, whereas PVP was almost amorphous. The area of the endotherm $({\Delta}H)$ of freezer milled ipriflavone, freezer milled ipriflavone physically mixed with freezer milled PVP, and physically mixed ipriflavone with PVP was almost the same, whereas ${\Delta}H$ of the solid dispersed ipriflavone with PVP was much smaller than that of the other preparation types. Also, the crystallinity and the crystal size of ipriflavone in the solid dispersed ipriflavone with PVP were much smaller than those of the other preparation types. From the in vivo test, the AUC of the solid dispersed ipriflavone with PVP was approximately 10 times higher than that of the physically mixed ipriflavone with PVP. The solid dispersion using the spray-drying method with a water-soluble polymer, PVP, may be effective for the improvement of the bioavailability.

친수성 고분자와의 고체분산체로부터 질산펜티코나졸의 용출 증가 (Dissolution Enhancement of Fenticonazole Nitrate from Hydrophilic Polymer Solid Dispersions)

  • 김영일;김승인;최재윤
    • Journal of Pharmaceutical Investigation
    • /
    • 제19권2호
    • /
    • pp.109-116
    • /
    • 1989
  • Solid dispersion of fenticonazole nitrate (FN) with poloxamer 407, polyethylene glycol 6000, povidone (K-90) were prepared by the solvent method. To characterize the state of the drug in solid dispersions, the x-ray diffractometry and differential scanning calorimetry were carried out. The identification of these systems suggested that FN in the poloxamer 407 system remained in crystalline state, and the drug in the PVP system was amorphous. A marked increase in the dissolution rate of FN was attained by dispersing the drug in the hydrophilic polymers used, and the dispersion with poloxamer 407 was superior to the other two carriers in releasing the drug into solution.

  • PDF

역상컬럼 및 고체분산체를 이용한 무정형 아데포비어디피복실의 제조 (Preparation of Amorphous Adefovir dipivoxil using Reverse Phase Column Chromatography and Solid Dispersion Method)

  • 윤명식;오다원;맹효찬;홍혜숙;박미경;이용택;이시범;조일환;문병석
    • 약학회지
    • /
    • 제54권4호
    • /
    • pp.316-321
    • /
    • 2010
  • Adefovir dipivoxil which was originally developed by Gilead Sciences has been used as treatments of HIV and HBV, especially a therapeutics for HBeAg positive and negative chronic patients. We developed highly efficient purification method using reverse phase column chromatography for mass production and a stable amorphous Adefovir dipivoxil using solid dispersion method. Reverse phase column chromatography led to highly pure product, more than 99.7% by HPLC and can be used for mass production compared with normal column chromatography. Solid dispersion method containing watersoluble polymer and Isomalt showed improved stability of amorphous Adefovir dipivoxil against heat and moisture.

비페닐 디메칠 디카르복실레이트 고체분산체 정제 처방의 최적화 (Formulation Optimization of the Tablet Prepared with Solid Dispersion of Biphenyl Dimethyl Dicarboxylate with Poloxamer)

  • 이장원;박은석;지상철
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권4호
    • /
    • pp.267-274
    • /
    • 1998
  • Biphenyl dimethyl dicarboxylate (DDB) has been used for the treatment of acute and chronic hepatitis. However, its poor solubility in water, $2.5\;{\mu}g/ml$, caused low bioavailability of the drug after its oral administration. In order to increase the dissolution of DDB in gastrointestinal tracts, consequently to increase the bioavailability of the drug, DDB tablet was prepared with solid dispersion of DDB with poloxamer 338 or 407 using a direct compression method. To improve the flowability of the solid dispersion, Aerosil was used as an adsorbent. The effect of formulation variables (poloxamer and Aerosil contents) on the dissolution rate of DDB from tablets was investigated using an analysis of variance. The dissolution rate of DDB from tablets was evaluated with KP II (paddle) method. The dissolution patterns of the drug from the tablet prepared with poloxamer 407 were affected significantly by the contents of poloxamers and Aerosil over the range employed, but those of the drug from the tablet prepared with poloxamer 338 were not. The optimum formulation of the DDB tablet, showed the same dissolution pattern as that of the reference, was obtained after polynomial equations of drug dissolution profiles for each formula were fitted to contour plots. The optimum formulation ratios of DDB:poloxamer 407:Aerosil were 1:2.5:2.5 and 1:5:5.

  • PDF

부유 물질 거동 분석을 위한 실규모 실험 및 입자 분산 모형 적용 (Real Scale Experiment for Suspended Solid Transport Analysis and Modeling of Particle Dispersion Model)

  • 신재현;박인환;성호제;이동섭
    • 융합정보논문지
    • /
    • 제10권12호
    • /
    • pp.236-244
    • /
    • 2020
  • 본 연구에서는 하천실험센터에서 부유 물질 실험을 수행하여 부유 물질의 거동 및 확산을 관찰하고 이를 입자분산모형을 통하여 그 이동을 구현하고자 하였다. 규사를 물과 믹서기를 이용하여 혼합한 후 실규모 크기의 실험수로에 인위적으로 투입하고 레이저부유사측정기(LISST)를 이용하여 부유 물질의 농도를 측정하였다. 실험에서 드론 이미지 및 부유사 측정기 관측 데이터와 입자 분산 모형을 통해 부유 물질의 거동을 모의하여 비교한 결과, 비교적 실험 결과가 구현이 잘 된 것을 확인할 수 있었다. 이를 통하여 입자 분산 모형의 적용성은 물론, 높은 강우량으로 인한 유량 발생 시 부유 물질 예측 활용성을 기대할 수 있게 되었다.

초임계유체를 이용한 파클리탁셀고체분산체의 제조 및 평가 (Preparation and Evaluation of Paclitaxel Solid Dispersion by Supercritical Antisolvent Process)

  • 박재현;지상철;우종수
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권4호
    • /
    • pp.241-247
    • /
    • 2008
  • Paclitaxel is a taxane diterpene amide, which was first extracted from the stem bark of the western yew, Taxus brevifolia. This natural product has proven to be useful in the treatment of a variety of human neoplastic disorders, including ovarian cancer, breast and lung cancer. Paclitaxel is a highly hydrophobic drug that is poorly soluble in water. It is mainly given by intravenous administration. Therefore, The pharmaceutical formulation of paclitaxel ($Taxol^{(R)}$; Bristol-Myers Squibb) contains 50% $Cremophor^{(R)}$ EL and 50% dehydrated ethanol. However the ethanol/Cremophor EL vehicle required to solubilize paclitaxel in $Taxol^{(R)}$ has a pharmacological and pharmaceutical problems. To overcome these problems, new formulations for paclitaxel that do not require solubilization by $Cremophor^{(R)}$ EL are currently being developed. Therefore this study utilized a supercritical fluid antisolvent (SAS) process for cremophor-free formulation. To select hydrophilic polymers that require solubilization for paclitaxel, we evaluated polymers and the ratio of paclitaxel/polymers. HP-${\beta}$-CD was used as a hydrophilic polymer in the preparation of the paclitaxel solid dispersion. Although solubility of paclitaxel by polymers was increased, physical stability of solution after paclitaxel/polymer powder soluble in saline was unstable. To overcome this problem, we investigated the use of surfactants. At 1/20/40 of paclitaxel/hydrophilic polymer/ surfactant weight ratio, about 10 mg/mL of paclitaxel can be solubilized in this system. Compared with the solubility of paclitaxel in water ($1\;{\mu}g/mL$), the paclitaxel solid dispersion prepared by SAS process increased the solubility of paclitaxel by near 10,000 folds. The physicochemical properties was also evaluated. The particle size distribution, melting point and amophorization and shape of the powder particles were fully characterized by particle size distribution analyzer, DSC, SEM and XRD. In summary, through the SAS process, uniform nano-scale paclitaxel solid dispersion powders were obtained with excellent results compared with $Taxol^{(R)}$ for the physicochemical properties, solubility and pharmacokinetic behavior.