• Title/Summary/Keyword: Solid Catalysts

Search Result 171, Processing Time 0.026 seconds

Photocatalytic hydrogen production by water splitting using novel catalysts under UV-vis light irradiation

  • Marquez, Francisco;Masa, Antonio;Cotto, Maria;Garcia, Abraham;Duconge, Jose;Campo, Teresa;Elizalde, Eduardo;Morant, Carmen
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Photocatalytic hydrogen generation by water splitting ($H_2O_{(1)}{\rightarrow}H_2_{(g)}+1/2O_2_{(g)}$) has been studied on photocatalysts based on Zn, Cd, Fe and Cu, synthesized by coprecipitation. Iron and copper nanoparticles were incorporated as cocatalysts to enhance the photocatalytic activity of the ZnCd solid solution. The effect of the different synthesis parameters (temperature, elemental atomic ratios, amount of Cu and Fe incorporated in the catalyst and calcination temperature) on the photocatalytic production of hydrogen has been studied in order to determine the best experimental synthesis conditions. The catalysts have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and BET. The experiments of photocatalytic water splitting were performed in aqueous solution of the photocatalysts previously dispersed in a soft ultrasound bath. The photocatalysts were irradiated under different lights ranging from 220 to 700 nm. The photocatalytic activity was found to be clearly dependent on the specific area of the photocatalyst.

Solid Acid Catalyzed Formation of ETBE(Ethyl tert-Butyl Ether) as an Octane Enhancer for Gasoline (고체산 촉매에 의한 가솔린 옥탄가 향상제인 ETBE (Ethyl tert-Butyl Ether) 합성)

  • Park, Nam-Cook;Kim, Jae-Seung;Seo, Seong-Gyu;Oh, Young-Yenl
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.162-170
    • /
    • 1993
  • Vapor-phase ETBE(ethyl tert-butyl ether) synthesis from TBA(tert-butyl alcohol) and ethanol was carried over solid acid catalysts such as heteropoly acids and proton type zeolites. Heteropoly acids were more active than proton type zeolites and $H_4SiW_{12}O_{40}$ catalyst showed about the same activity as Amberlyst-15 ion exchange resin catalyst used as an industrial catalyst in ETBE synthesis. The catalytic activity of transition metal exchanged heteropoly acids was greatly enhanced, because new acid site was generated with hydrogen reduction. This effect of hydrogen reduction was related to the reduction characteristics of catalysts and the order of reducibility was $Ag^+$>$Cu^{2+}$>$Fe^{2+}$.

  • PDF

Catalytic Conversion of Cellulose to Cellulose Acetate Propionate (CAP) Over SO42-/ZrO2 Solid Acid Catalyst

  • Leng, Yixin;Zhang, Yun;Huang, Chunxiang;Liu, Xiaocheng;Wu, Yuzhen
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1160-1164
    • /
    • 2013
  • The solid super acid catalyst $SO{_4}^{2-}$/$ZrO_2$ was prepared by impregnation method using $ZrO_2$ as the catalyst support. Catalyst forming was taken into consideration in order to separate catalyst from the mixture of cellulose acetate propionate (CAP). $Al_2O_3$ and sesbania gum powder were selected as binding agent and auxiliary agent respectively. The catalytic properties were evaluated through esterification of cellulose with acetic anhydride, propionic anhydride and characterized by XRD, FTIR and $NH_3$-TPD. In this paper, the effects of concentration of $H_2SO_4$ impregnated, calcination temperature, esterification temperature and esterification time on the yield, acyl content and viscosity of CAP were investigated. The results showed that $SO{_4}^{2-}/ZrO_2$ successfully catalyzed CAP synthesis over catalysts impregnated in 0.75 mol/L $H_2SO_4$ and calcined at $500^{\circ}C$. The yield, acetyl content and propionyl content of CAP reached the maximum value of 105.3%, 29.9% and 25.8% reacted at $50^{\circ}C$ for 8 h.

A Stud on the Catalytic Removal of Nitric Oxide (질소산화물의 촉매반응에 의한 저감기술에 관한 연구)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

Synthesis, Characterization and Catalytic Evaluation of Zinc Fluorides for Biodiesel Production

  • Indrayanah, Sus;Marsih, I Nyoman;Murwani, Irmina Kris
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • The potential of zinc fluorides with different molar ratios of Zn/F was applied as a solid catalyst in the simultaneous reaction of transesterification and esterification of crude palm oil (CPO) for biodiesel production. These materials were prepared by the fluorolytic sol-gel technique with different fluorine contents. The resulting samples were investigated using elemental analysis, XRD, FT-IR, TG/DTG, $N_2$ physisorption measurements and SEM. The results exhibited that the presence of fluorine strongly affected the catalytic activity in the biodiesel production. The catalysts with smaller fluorine contents (${\leq}1$) showed the best performance in all of the observed samples, yields from 92.94 to 89.95, 87.38 and 85.21% with increasing fluorine contents, respectively. The yield toward the formation of biodiesel depended on the phase and particle sizes of catalysts, but it was not influenced by surface area, pore size, and volume of the samples. The recovered catalyst showed a gradual decrease in activity over three cycles of same reactions.

Preparation and Characterization of NiO/CeO2-ZrO2/WO3 Catalyst for Ethylene Dimerization: Effect of CeO2 Doping and WO3 Modifying on Catalytic Activity

  • Sohn, Jong-Rack;Han, Jong-Soo;Kim, Hae-Won;Pae, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.755-762
    • /
    • 2005
  • A series of catalysts, NiO/$CeO_2-ZrO_2/WO_3$, for ethylene dimerization was prepared by the precipitation and impregnation methods. For NiO/$CeO_2-ZrO_2/WO_3$ sample, no diffraction line of nickel oxide was observed up to 40 wt%, indicating good dispersion of nickel oxide on the surface of catalyst. The hexagonal and monoclinic phases of $WO_3$ up to the calcination temperature of 500 ${^{\circ}C}$ were observed, whereas the hexagonal phase of WO3 completely was transformed into monoclinic phase of $WO_3$ at 600 ${^{\circ}C}$ and above. The role of $CeO_2$ in the catalysts was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity. The catalytic activities for ethylene dimerization were correlated with the acidity of catalysts measured by the ammonia chemisorption method. 25-NiO/5-$CeO_2-ZrO_2/15-WO_3$ containing 25 wt% NiO, 15 wt% $WO_3$ and 5 mol% $CeO_2$, and calcined at 400 ${^{\circ}C}$ exhibited a maximum catalytic activity due to the effects of $WO_3$ modifying and $CeO_2$ doping.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Knoevenagel Condensation Reaction Using Amine-functionalized MCM-41 Base Catalysts (아민고정화 MCM-41 염기촉매를 이용한 Knoevenagel 축합반응)

  • Choi, Jung-Sik;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.417-423
    • /
    • 2006
  • A series of amine functionalized MCM-41 catalysts were prepared by aminopropyltrimethoxysilane grafting and their catalytic performance in Knoevenagel reaction of selected substrates was investigated. Water resistant and catalytically active amine grafted MCM-41 was prepared by post-synthetic silylation using methyltrimethoxysilane ; hydrogen bonding of the water molecules formed during the condensation reaction to the active N group was suppressed, which led to high TON of the reaction. Amine functionalized MCM-41 prepared by coating method produced high conversion, but the TON of the catalyst was much lower than that of the amine grafted MCM-41; pore volume of the functionalized MCM-41 decreased substantially and large portion of the immobilized amine is believed to be hydrogen bonded to each other, which can result in decrease in the basicity of the N group. A secondary amine group was prepared by room temperature condensation between aminopropylsilane and chloropropylsilane, and the MCM-41 grafted with the secondary amine group demonstrated the highest catalytic activity among the catalysts prepared.

Low-rank Coal Char Gasification Research with Mixed Catalysts at Fixed Reactor (고정층 반응기에서의 저등급 석탄 혼합촉매가스화 반응특성)

  • An, Seung Ho;Park, Ji Yun;Jin, Gyoung Tae;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.99-106
    • /
    • 2017
  • In this study, mixed catalytic char gasification of Indonesia low-rank coal Kideco was investigated under nitrogen atmosphere and isothermal conditions at a fixed reactor. The effects of the temperature were investigated at various temperature (700, 750, 800, $850^{\circ}C$). The effects of blend ratio of catalysts ($K_2CO_3$, Ni) were investigated with different blend ratios (1:9, 3:7, 5:5, 7:3 and 9:1). The sample was prepared by mixing with $K_2CO_3$ physically and by ionexchange method with Ni. The data from thermogravimetric analyzer and gas chromatography were applied to four gassolid reaction kinetic models including shrinking core model, volumetric reaction model, random pore model and modified volumetric reaction model.