• 제목/요약/키워드: Solid Acid Catalysts

Search Result 58, Processing Time 0.019 seconds

Pillared Bentonite Materials as Potential Solid Acid Catalyst for Diethyl Ether Synthesis: A Brief Review

  • Puji Wahyuningsih;Karna Wijaya;Aulia Sukma Hutama;Aldino Javier Saviola;Indra Purnama;Won-Chun Oh;Muhammad Aziz
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.223-234
    • /
    • 2024
  • This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.

Esterification and Trans-esterification Reaction of Fish Oil for Bio-diesel Production (바이오디젤 생산을 위한 어유의 에스테르화 및 전이에스테르화 반응)

  • Lee, Young-Jae;Kim, Deog-Keun;Lee, Jin-Suk;Park, Soon-Chul;Lee, Jin-Won
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.313-319
    • /
    • 2013
  • To produce biodiesel efficiently from fish oil containing 4% free fatty acid, esterification and trans-esterification were carried out with Vietnam catfish oil, which was kindly provided from GS-bio company. Heterogeneous solid acid catalysts such as Amberlyst-15 and Amberlyst BD-20 and sulfuric acid as homogeneous acid catalyst were used for the esterification of free fatty acids in the fish oil. Sulfuric acid showed the highest removal efficiency of free fatty acid and the shortest reaction time among three acid catalysts. The base catalysts for trans-esterification such as KOH, $NaOCH_3$ and NaOH were compared with each other and KOH was determined to be the best transesterification catalyst. Some solid material, which assumed to be saponified product from glycerol and biodiesel, were observed to form in the fish oil biodiesel when using $NaOCH_3$ and NaOH as the transesterification catalyst. The initial acid value of fish oil was proven to have a negative effect on biodiesel conversion. Of the three catalysts, KOH catalyst transesterification was shown to have high content of FAME and the optimal ratio of methanol/oil ratio was identified to be 9:1.

Effect of Al2O3 Addition and WO3 Modification on Catalytic Activity of NiO/Al2O3-TiO2/WO3 for Ethylene Dimerization

  • Pae, Young-Il;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1763-1770
    • /
    • 2007
  • Strong solid acid catalysts, NiO/Al2O3-TiO2/WO3 for ethylene dimerization were prepared by the addition of Al2O3 and the modification with WO3. The acid sites and acid strength were increased by the inductive effect of WO3 species bonded to the surface of catalysts. The larger the dispersed WO3 amount, the higher both the acidity and catalytic activity for ethylene dimerization. The addition of Al2O3 to TiO2 up to 5 mol% enhanced acidity and catalytic activity gradually due to the interaction between Al2O3 and TiO2 and consequent formation of Al-O-Ti bond.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.

Esterification of Methacrylic acid with Ethylene glycol over Heteropolyacid supported on ZSM-5 (ZSM-5 위에 지지된 Heteropolyacid 하에서 Methacrylic acid와 Ethylene glycol의 에스테르화 반응)

  • Prabhakarn, A.;Fereiro, J.A.;Subrahmanyam, Ch.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • Esterification of methacrylic acid with ethylene glycol was carried out over Heteropolyacids [HPA: $H_4SiW_{12}O_{40}$ (STA) and $H_3PW_{12}O_{40}$ (PTA)] supported on ZSM-5. For comparison, the same reaction was carried out over unsupported HPA, $H_2SO_4$, $BF_3$ and PTSA. Among the catalysts studied, HPA showed better activity compared to $H_2SO_4$, $BF_3$ and PTSA. Catalytic activity was compared with HPA supported ZSM-5 catalysts. Typical results indicated that 30 wt% PTA supported on ZSM-5 showed nearly the same activity as that of bulk PTA. It was found that the reaction follows first order kinetics with respect to methacrylic acid. The reaction products were identified by $^1H$-NMR and FT-IR.

Cinchona-based Sulfonamide Organocatalysts: Concept, Scope, and Practical Applications

  • Bae, Han Yong;Song, Choong Eui
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1590-1600
    • /
    • 2014
  • Cinchona-based bifunctional catalysts have been extensively employed in the field of organocatalysis due to the incorporation of both hydrogen-bonding acceptors (quinuclidine) and hydrogen-bonding donors (e.g., alcohol, amide, (thio)urea and squaramide) in the molecule, which can simultaneously activate nucleophiles and electrophiles, respectively. Among them, cinchona-derived (thio)urea and squaramide catalysts have shown remarkable application potential by using their bifurcated hydrogen bonding donors in activating electrophilic carbonyls and imines. However, due to their bifunctional nature, they tend to aggregate via inter- and intramolecular acid-base interactions under certain conditions, which can lead to a decrease in the enantioselectivity of the reaction. To overcome this self-aggregation problem of bifunctional organocatalysts, we have successfully developed a series of sulfonamide-based organocatalysts, which do not aggregate under conventional reaction conditions. Herein, we summarize the recent applications of our cinchona-derived sulfonamide organocatalysts in highly enantioselective methanolytic desymmetrization and decarboxylative aldol reactions. Immobilization of sulfonamide-based catalysts onto solid supports allowed for unprecedented practical applications in the synthesis of valuable bioactive synthons with excellent enantioselectivities.

Insulation Properties and Evaluation of Diglycerol Ester Synthesized by Solid Acid Catalysts (고체산 촉매를 이용해 합성한 diglycerol ester의 전기절연 특성 및 평가)

  • Gwon, Miseong;Baek, Jae Ho;Kim, Myung Hwan;Park, Dae-Won;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.254-261
    • /
    • 2014
  • The transformer is a static electrical device that transfers energy by inductive coupling. Then, heat is occurred at coils, inner transformer was filled with insulating oils for cooling and insulation. Although mineral oil as insulating oil has been widely used, it does not meet health and current environmental laws because it is not biodegradable. Therefore, in this study, the diglycerol ester was synthesized with diglycerol and fatty acids (oleic acid and caprylic acid) over various catalysts for insulating oil having biodegradability, high flash points and low pour points. The sulfated zirconia ($SO_4{^{2-}}/ZrO_2$) catalyst prepared at different calcination temperature shows the highest conversion of fatty acids at $600^{\circ}C$ due to crystallinity and high density of acid sites per surface area. When the molar ratio of oleic acid and caprylic acid is 1:3, the diglycerol ester shows superior insulation properties that are the flash point of $306^{\circ}C$ and pour point of $-50^{\circ}C$. The insulation properties of synthesized diglycerol ester shows the pour point of $-50^{\circ}C$ and the flash point of over $300^{\circ}C$. Therefore, diglycerol ester is superior to the vegetable oils in insulation properties.

Catalytic Cracking of Pyrolysed Waste Lube-oil Into High Quality Fuel Oils Over Solid Acid Catalysts (고체산 촉매를 이용한 페윤활유 열분해유의 고급연료유화 특성 연구)

  • 박종수;윤왕래;고성혁;김성현
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.248-255
    • /
    • 1999
  • Catalytic cracking of pyrolysed waste lubricating oil over solid acid catalysts (HY zeolite, ${\beta}$-zeolite, HZSM-5) has been carried out in a micro-fixed bed system. The feed oil for catalytic activity tests has been prepared by thermal cracking of waste lubricating oil under the reaction conditions of 480$^{\circ}C$, 60 min. Optimum reaction conditions for the maximum light oil yields($\_$21/) were WHSV(weight hourly space velocity)=1 at 375$^{\circ}C$. The amounts of total and strong acid sites appeared to be the largest in ${\beta}$-zeolite as determined by NH$_3$, TPD. It is seen that the catalytic activity order, in terms of the light fuel oil ($\_$21/) production, were HY zeolite)${\beta}$-zeolite>HZSM-5. Also, coke formation followed the same order. The highest activity in HY zeolite may be attributed from the fact that it has supercages facilitating the easy diffusion of larger molecules and also the effectiveness of the acid sites for cracking within the pore. This fact could be confirmed by the coke formation characteristics.

  • PDF

The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel (실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구)

  • Choi, Jae-Hyung;Park, Yong-Beom;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.

Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride (고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구)

  • Park, Yong Beom;Choi, Jae Hyung;Lim, Han-Kwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • Various metal chlorides and acid catalysts in ionic liquid solvent were investigated to directly convert cellulose into 5-hydroxymethylfurfural (5-HMF). Metal chlorides containing Sn(II), Zn(II), Al(III), Fe(III), Cu(II), and Cr(III) were used and acidic ionic liquid immobilized on silica gel as an acid catalyst and commercial acid catalysts (sulfuric acid, chloric acid, Amberlyst-15,DOWEX50x8) were used for comparison studies. The acid strength and amount of acid catalysts were probed with Hammett indicator. The selectivity and yield of 5-HMF were determined with reaction temperature, reaction time and catalyst ratio. A catalyst containing $CrCl_3-6H_2O$ and $SiO_2-[ASBI]HSO_4$ showed the highest selectivity and it was found that this catalyst had higher activity than commercial solid acid catalysts such as Amberlyst-15 and DOWEX50x8. The selectivity of 5-HMF appeared to be mainly dependent on the acid strength and catalyst ratio, it was found that levulinic acid was produced from 5-HMF by rehydration.