• 제목/요약/키워드: Solenoid actuator

검색결과 111건 처리시간 0.026초

압전 작동기를 이용한 새로운 디스펜싱 시스템 설계 (Design of a New Dispensing System Featuring Piezoelectric Actuator)

  • 구오흥;최민규;윤보영;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents a novel type of hybrid dispensing head for IC fabrication and surface mount technology. The proposed mechanism consists of solenoid valve and piezoelectric stack as actuators, and provides positive-displacement and jet dispensing. The positive-displacement dispensing can produce desired adhesive amount without viscosity effect, while the jet dispensing can produce high precision adhesive amount. In order to determine the relationship between required voltage of the piezoelectric actuator and needle displacement, both static and dynamic analysis are undertaken, In addition, finite element analysis is performed in order to find optimal design parameters. Dispensing flow rate and pressure in the chamber are evaluated through fluid dynamic model.

압전 작동기를 이용한 새로운 디스펜싱 시스템 설계 (Design of a New Dispensing System Featuring Piezoelectric Actuator)

  • 구오흥;최민규;윤보영;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.821-826
    • /
    • 2006
  • This paper presents a novel type of hybrid dispensing head for IC fabrication and surface mount technology. The proposed mechanism consists of solenoid valve and piezoelectric stack as actuators, and provides positive-displacement and jet dispensing. The positive-displacement dispensing can produce desired adhesive amount without viscosity effect, while the jet dispensing can produce high precision adhesive amount. In order to determine the relationship between required voltage of the piezo actuator and needle displacement, both static and dynamic analysis are undertaken, In addition, finite element analysis is performed in order to find optimal design parameters. Dispensing flow rate and pressure in the chamber are evaluated through fluid dynamic model.

  • PDF

차량 능동 현가 장치용 유압 액추에이터의 감쇠력 특성에 관한 연구 (A Study on the Characteristics of Damping Force in a Hydraulic Actuator for Vehicle Active Suspension System)

  • 윤영환;최명진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.150-158
    • /
    • 2002
  • Through experimental works, the damping force vibration problem was investigated, which results from valve and surge pressure in the oil return line of the hydraulic circuit of an active suspension system in a passenger cu. Experiments were carried out under passive system, where an orifice valve was closed and non-active system, where an orifice valve was opened, using a pressure control valve controlled by solenoid. The effects of parameters of the valve overlap and accumulator on smoothing surge pressure was elucidated. It was proved that the apparent variation of damping force due to the overlap amount of pressure control valve is the most important factor to control the damping force variation. The procedure of the experimental works shows the development process of a proportional pressure control valve in the hydraulics system of an active suspension system of passenger car.

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.

DSP 카드 및 PC에 의한 공압구동장치의 실시간 모의시험기 개발 (Development of a Pneumatic Actuation System Real-Time Simulator Using a DSP Board and PC)

  • 이성래;신효필
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.320-326
    • /
    • 2000
  • The real-time simulator of a pneumatic actuation system that is composed of differential PWM signal generator, charge solenoid valve, discharge solenoid valve, actuator, load, and rotational potentiometer is developed using a DSP board and a PC. The simulator receives the control signals from the external controller through the A/D converter, updates the state and output variables of the Pneumatic actuation system responding to the input signals every sampling time, and sends out the output signals through the D/A converter in real time. The user can observe the displacements, velocities, pressures, and mass flows representing the operation of pneumatic actuation system through the PC monitor in real time. Also the user can see the moving images between the pistons and rotating arm realistically in real time. The accuracy of the real-time simulator is verified by the good agreement of the real-time simulation results and the experimental results of the pneumatic actuation system.

  • PDF

MPWM을 이용한 공압 실린더의 지능제어 (Intelligent control of pneumatic actuator using MPWM)

  • 송인성;표성만;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

EHA 밸브 성능시험 장치 개발 (Development of Performance Test Equipment for Easy-Hill Assist Valve)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권4호
    • /
    • pp.61-67
    • /
    • 2014
  • When a manual transmission equipped car stops on an incline where the nose of the car is higher than the rear, hill-start control or hill-holder could prevent the vehicle from rolling backward as the car moves forward. The easy-hill assist valve consists of a check valve and a needle type ON/OFF solenoid valve connected in parallel; it is a hydraulic actuator that can maintain brake pressure using an electrical signal from the ECU. As the EHA valve is a safety-related component of the brake system, high reliability as well as superior dynamic performance is required for it to be applied in commercial vehicles. This paper presents the design of the EHA valve as a piece of equipment that can simulate the brake actuation pressure with a pressurizing piston. Following specific test standards, the experimental results validate the implemented functions of the test equipment, proving the test stand to be effective for the performance and endurance of the EHA valve.

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권6호
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.

유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발 (A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator)

  • 윤영환;장주섭;최명진
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

액추에이터에서의 자성유체 제어 및 유동 특성에 관한 연구 (A Study on the Flow and Control Characteristics of Magneticfluid in Actuator)

  • 김중;전운학;이희상;이봉규;황승식;오창복
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.258-267
    • /
    • 1999
  • The aim of the study is to provide fundamental information for the development of magneticfluid actuator. To achieve the aim, the force and dynamic characteristics of magenticfluid are investigated by experiment for the various of tube diameter, height and position of magneticfluid column in magneticfield according to supplied voltage of solenoid coil, wave form and frquency. From this study, actuating force of magneticfluid is generated by magneticfield. The magnitude of force increases as the intensity of magneticfield becomes strong and the center of magneticfield becomes lower than the center of magneticfluid column. And the force of magneticfluid relates to the volume of magneticfluid more than the height and diameter. The response delay time decreases as the height of magmeticfluid more than the height and diameter. The response delay time decrease as the height of magneticfluid column becomes longer and the center of magneticfield becomes lower than the center of magniticfluid column. But, the approaching time increases as supplied voltage becomes higher and the center of magneticfiled becomes higher than the center of magniticfluid column. The frequency generating maximum force is 1Hz and the critical frequency is about 4Hz.

  • PDF