• Title/Summary/Keyword: Solenoid

검색결과 842건 처리시간 0.033초

최적화 기법을 사용한 직류 솔레노이드 액츄에이터의 설계변수 결정 (Optimal Design of Solenoid Actuator Using Empirical Coefficient and Optimization Technique)

  • 성백주;이은웅;이재규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.689-690
    • /
    • 2006
  • The development method of a pneumatic solenoid actuator which is used as key components in automobile and aircraft industry is described. For the optimal design of solenoid actuator, we applied the general electromagnetic theory and empirical knowledge. By using the governing equation for the solenoid actuator based on the electromagnetic theory and empirical coefficient, and constrained of optimization technique, we proposed the optimal design technique of low consumption type DC solenoid actuator. The design results of the DC 24V, 0.5W solenoid actuator were presented.

  • PDF

밸브 구동용 개폐식 솔레노이드 액추에이터의 설계 (A Design of On/Off Type Solenoid Actuator for Valve Operation)

  • 성백주
    • 유공압시스템학회논문집
    • /
    • 제6권4호
    • /
    • pp.24-32
    • /
    • 2009
  • For a design of on/off solenoid actuator for valve actuating, designer must have the experimental knowledge as well as general electromagnetic formulas to design object. It is possible for theoretical knowledge to do the out-line design, but it is impossible to optimal design without experimental knowledge which only can be achieved through many repeated experiments. In addition, in present on/off type solenoid actuator field, the smaller, lightening, lower consumption power, high response time are effected as the most important design factor. So, experimental knowledge is more needed for optimal design of solenoid actuator. In this study, we derived the governing equations for optimal design of on/off solenoid actuator for valve actuating and developed a design program composed electromagnetic theories and experimental parameter values for inexperienced designers. And we proved the propriety of this program by experiments.

  • PDF

솔레노이드 밸브를 이용한 고압가스의 유량제어 (Flow Control for High Pressure Gas by using a Solenoid Valve)

  • 심한섭;이치우;김남경;안국찬;남궁재관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.156-161
    • /
    • 2005
  • Dynamic flow characteristics of a solenoid valve are affected by pressure difference in inlet and outlet of orifice, gas temperature, and supply voltage of a coil. In this paper, the dynamic flow characteristics for deviations of various conditions are studied Static and dynamic flow for variation on-time of a solenoid valve open signal are measured in basic bench test. The solenoid valve is applied to a compressed natural gas(CNG) engine test for validation of flow control performance. The experimental results show that flow of high pressure gas can controlled precisely by using a solenoid valve.

  • PDF

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

PWM 방식 고속 전자석에 관한 연구 (A study on the PWM type High Speed Electromagnet)

  • 송창섭;양해정;송성배
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.127-135
    • /
    • 1994
  • This paper is concerned about a high speed electromagnet of Pressure control solenoid valve. Solenoid valve is controlled by means of Pulse width modulation. The magnetostatic field problem on a solenoid is numerically solved by the 2-D axisymmetric finite element method. And permeance method is adopted for analysing the static and dynamic property of solenoid part theoretically. In addition, in this study, experiments on solenoid part were performed in order to measure the magnetic force and plunger displacement. The numerical results coincided with the experimental results. As a result, the magnetic force has the linear relation with displacement of plunger and the primary factors on the performance of PWM type high speed electromagnet are coil resistance, plunger mass, and the length of air gap between plunger and core.

  • PDF

2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석 (Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System)

  • 이진욱;이중협;김민식
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

Solenoid 전동기의 냉각을 위한 수치해석적 연구 (Numerical Analysis of Heat Transfer Characteristics inside a Solenoid Motor System)

  • 정민채;윤상길;윤동진;서정세
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.99-104
    • /
    • 2020
  • In this study, the temperature distribution and heat transfer characteristics of each component in a solenoid motor system were numerically investigated when heat is generated by the steel pad attached to the solenoid ring of the motor. It was found that the internal airflow was complicated by the inflow velocity of air and the rotation of guide rollers and solenoid rings. Based on the numerical results, the tendency for temperature changes in the steel panel was lower due to the contact of the cooling air in the front in the rotational direction, and the peak temperature was at the front of the center. In particular, it was confirmed that as the air inflow rate was increased, the temperature was reduced due to strong convection. The temperature of the iron plate pad was decreased as the convective heat transfer coefficient was linearly increased with increasing airflow around the solenoid ring. In addition, the temperature of the iron plate panel was rapidly increased with increasing heat generation.

극저온 환경을 고려한 우주발사체용 솔레노이드 밸브 설계 (Design of Space Launch Vehicle Solenoid Valve for Cryogenic Environment)

  • 김병훈;한상엽;고영성
    • 한국항공우주학회지
    • /
    • 제43권11호
    • /
    • pp.1028-1034
    • /
    • 2015
  • 발사체에 적용되는 솔레노이드 밸브의 경우 산업용 솔레노이드 밸브에 비해 엄격한 전류 및 무게, 크기 제한 조건을 요구한다. 이러한 제한 조건을 만족하며, 솔레노이드 밸브의 작동을 보장하기 위한 추진제탱크 가압제어용 솔레노이드 밸브 설계를 수행하였다. 극저온 상태에서 솔레노이드 전류 상승을 방지하기 위해 구리와 콘스탄탄 재료를 사용한 새로운 형태의 코일 설계를 적용하였으며, 시제품을 이용한 시험결과 측정된 전류는 설계 규격을 만족하고 있다.