• 제목/요약/키워드: Solder fatigue

검색결과 89건 처리시간 0.027초

A Study on $\mu$BGA Solder Joints Reliability Using Lead-free Solder Materials

  • Shin, Young-Eui;Lee, Jun-Hwan;Kon, Young-Wook;Lee, Chong-Won;Yun, Jun-Ho;Jung, Seug-Boo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.919-926
    • /
    • 2002
  • In this study, the numerical prediction of the thermal fatigue lie? of a $\mu$BGA (Micro Ball Grid Array) solder joint was focused. Numerical method was performed using the three-dimensional finite element analysis for various solder alloys such as Sn-37%Pb, Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-3.5%Ag-3%In-0.5%Bi during a given thermal cycling. Strain values obtained by the result of mechanical fatigue tests for solder alloys, were used to predict the solder joint fatigue life using the Coffin-Manson equation. The numerical results showed that Sn-3.5%Ag with the 50-degree ball shape geometry had the longest thermal fatigue life in low cycle fatigue. A practical correlation for the prediction of the thermal fatigue life was also suggested by using the dimensionless variable γ. Additionally Sn-3.5Ag-0.75Cu and Sn-2.0Ag-0.5Cu-2.0Bi were applied to 6$\times$8$\mu$BGA obtained from the 63Sn-37Pb Solder. This 6$\times$8$\mu$BGA were tested at different aging conditions at 130$\^{C}$, 150$\^{C}$, 170$\^{C}$ for 300, 600 and 900 hours. Thickness of the intermetallic compound layer was measured thor each condition and the activation energy thor their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS ( Energy Dispersive Spectroscopy).

Solid-state drive 강제진동시 dummy solder ball 효과에 의한 피로수명 예측 (Fatigue Life Estimation of Solid-state Drive due to the Effect of Dummy Solder Ball under Forced Vibration)

  • 이주엽;장건희;장진우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.978-983
    • /
    • 2014
  • This research proposes a method to estimate the fatigue life of solid-state drive(SSD) due to the effect of dummy solder ball under forced vibration. Mechanical jig is developed to describe the SSD in laptop computer. The jig with SSD is mounted on a shaker, and excited by a sinusoidal sweep vibration within the narrow frequency band around the first resonant frequency until the SSD fails. A finite element model of SSD is also developed to simulate the forced vibration. It shows that the solder joints at the corners of controller package are most vulnerable components and that placing dummy solder balls at those area is effective method to increase fatigue life of SSD.

  • PDF

온도사이클을 받는 Solder Joint의 피로수명에 관한 연구 (A Study on the Fatigue Life Prediction of Solder Joints under Thermal Cyclic Loading)

  • 김진기;이순복
    • 전자공학회논문지A
    • /
    • 제31A권12호
    • /
    • pp.44-55
    • /
    • 1994
  • This study is to apply the theory of fatigue fracture to solder joints under thermal cyclic loading and predict life of solder joint to failure. A 62Sn-36Pb-2Ag solder was used in this study. Tensile tests were preformed at temperatures of 15.dec. C, 50.dec. C and 85.dec. C in order to find terms of crack length "a". plastic strain range ""${\Delta}{\varepsilon}_p$" and temperature "T". Solder joint under thermal cyclic loading was analyzed by FEM. this FEM analysis together with the crack growth rate will provide the capability of the fatigue life prediction of solder joints and enhance the reliability od solder joint.

  • PDF

BLP 패키지의 솔더 조인트의 신뢰성 연구 (Solder Joint Reliability of Bottom-leaded Plastic Package)

  • 박주혁
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.79-84
    • /
    • 2002
  • The bottom-leaded plastic(BLP) packages have attracted substantial attention since its appearance in the electronic industry. Since the solder materials have relatively low creep resistance and are susceptible to low cycle fatigue, the life of the solder joints under the thermal loading is a critical issue for the reliability The represent study established a finite element model for the analysis of the solder joint reliability under thermal cyclic loading. An elasto-plastic constitutive relation was adopted for solder materials in the modeling and analysis. A 28-pin BLP assembly is modeled to investigate the effects of various epoxy molding compound, leadframe materials on solder joint reliability. The fatigue life of solder joint is estimated by the modified Coffin-Hanson equation. The two coefficients in the equation are also determined. A new design for lead is also evaluated by using finite element analysis. Parametric studies have been conducted to investigate the dependence of solder joint fatigue life on various package materials.

  • PDF

SSD 강제진동 시 더미 솔더 볼 효과에 의한 피로수명 예측 (Fatigue Life Estimation of Solid-state Drive due to the Effect of Dummy Solder Ball under Forced Vibration)

  • 이주엽;장건희;장진우
    • 한국소음진동공학회논문집
    • /
    • 제25권3호
    • /
    • pp.176-183
    • /
    • 2015
  • This research proposes a method to estimate the fatigue life of SSD(solid-state drive) due to the effect of dummy solder ball under forced vibration. A finite element model of the SSD was developed to simulate the forced vibration and a modal testing was performed to verify the developed finite element model. Fatigue life of the SSD under vibration was experimentally determined according to JEDEC standard in which the SSD was excited by a sinusoidal sweep vibration within the narrow frequency band around the first natural frequency until the SSD fails. Basquin's equation was introduced to estimate the fatigue life of the SSD due to the effect of dummy solder balls. It shows that the dummy solder balls are effective elements of the SSD to increase the fatigue life of an SSD by increasing 700 times of the fatigue life of the given SSD.

Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가 (Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint)

  • 명노훈;이억섭;김동혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF

취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계 (Development of Reliability Design Technique and Life Prediction Model for Electronic Components)

  • 김일호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구 (A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions)

  • 김일호;이순복
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권2호
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

63Sn-37Pb 땜납의 크리프 특성에 관한 연구 (A Study on the Creep Characteristics of Solder of 63 Sn-37Pb)

  • 이억섭;김의상
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.138-144
    • /
    • 2004
  • The initiation and the propagation of solder joint crack depend on its environmental conditions, such as high temperature creep and thermal fatigue. Creep is known to be the most important factor for the mechanical failure of solder joints in micro-electronic components and micro-systems. This is mainly caused by the different thermal expansion coefficients of the materials used in the micro-electronic packages. To determine the reliability of solder joints and consequently the electronic components, the characterization of the creep behavior of this group of materials is crucial. This paper is to apply the theory of creep into solder joints and to provide related technical information needed for evaluation of reliability of solder joint to failure. 63Sn-37Pb solder was used in this study. This paper experimentally shows a way to enhance the reliability of solder joints.

Thermal Fatigue Life of Underfilled $\mu\textrm$ BGA Solder Joint

  • Kim, H.H.;Han, S.W.;Kim, H.I.;Choi, M.;Shin, Y.E.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.61-66
    • /
    • 2004
  • In this paper, the effect of underfill packages was investigated by numerical approach and experimental test. Reliability improvement was the main issue in the package technology. BGA, CSP and small-sized packages, have problems due to concentration of the stress in solder joints. One of the latest technologies to overcome is underfill encapsulant. Mainly, it is noticed the effect of the underfill in the packages. The predicted thermal fatigue lifes are performed by Coffin-Manson's equation with ANSYS (v.5.62). Also, thermal cycle test during from 218K to 423K was included. Finally we could find that underfill greatly reduce the concentration stress in solder joint, thus the fatigue life was improved than without underfill.

  • PDF