• Title/Summary/Keyword: Solar-wind hybrid generation system

Search Result 37, Processing Time 0.026 seconds

A study on solar-wind hybrid power generation system (태양광 및 풍력 하이브리드 발전 시스템에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1226-1231
    • /
    • 2009
  • In this paper, a solar-wind hybrid system is decsribed for Stand-Alone(SA) power generation system. Mostly SA power generation system for ocean facilities composes a solar system. Normally, the output power of solar system is decreased with weather condition as cloudy and rainy. Solar-wind hybrid system can be operated as complement system each other. In this paper, the characteristic simulation of solar and wind is performed by LabVIEW. The hybrid power generation system is designed according to simulation results, and is tested for checking the complement characteristic.

Measurement of local wind and solar radiation for a hybrid power generation system design, Busan, Korea

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.799-806
    • /
    • 2013
  • As a first step to develop the hybrid power generation system, on this study, the time-variable resources of wind and solar radiation of Yeongdo, Busan, Korea had been measured during June and July 2013. And the quantity of generated wind power and solar photovoltaic had also been measured during the same period. It is found out that the wind mainly flew from southwest at the average speed of 2 m/s during 2 months. And it is clear that, because of the low wind velocity, the wind quality to generate the power seems not enough at this area. Meanwhile solar radiation was measured every daytime (6:00~19:00) and the peak solar radiation occurred around 12:00~14:00. And it is clear that the time-based variations of quantity of generated power were proportional to the variations of these resources, respectively. As a proposal, these 2 natural energies can be combined as resources of a hybrid system, because these 2 patterns are not overlapped so much on time base.

A Concept of Buoyant Hybrid Power Generation System by using Solar Cell Modules and Power Generator in the Sea (태양전지 모듈 및 발전기를 사용한 해상 태양광-풍력 복합발전시스템 개념)

  • Cha, Kyung-Ho;Cha, Min-Jae;Lee, Hee-Sei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.91-93
    • /
    • 2008
  • A Buoyant Hybrid Power Generation System (BHPGS) described in this paper, is a conceptual approach to a hybrid solar-wind power generation in the near sea. The primary purpose of the BHPGS is given to improve utilization of solar cell modules. Main components of the BHPGS include a solar cell module, buoyant object, power generator, and support assembly including weight. Components such a generator controller, DC/AC converter, etc., are not configured in the current BHPGS because they can easily be purchased as a commercial-off-the-shelf product. In addition, some of the BHPGS applications are discussed.

  • PDF

Performance of Wind-Photovoltaic Hybrid Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.319-324
    • /
    • 2005
  • This paper reports the performance of Wind-PV(Photovoltaic) hybrid system. The output power of PV is affected by the environmental factors such as solar radiation and cell temperature. Also, the output power of wind system is generated with wind power. Integration of Wind and PV resources, which are generally complementary, usually reduce the capacity of the battery. This paper includes discussion on system reliability, power quality and effects of the randomness of the wind and the solar radiation on system design.

Preliminary Feasibility Study on Wind and Solar Hybrid Power Systems based on Venturi Effects for Buildings (벤투리 효과를 활용한 도심형 건물용 하이브리드 풍력 및 태양광 발전 시스템 기초타당성 예비연구)

  • Suhyun Kim;Yoonsoo Kim;Sumin Park;Jihyeon An;Sanghun Lee
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Recently, the use of renewable energy has been increasing to achieve carbon neutrality. The concept of a zero-energy building is also attracting attention. In this study, a preliminary study was conducted to analyze the feasibility of a hybrid wind and solar power generation system between buildings that utilize the building wind generated by the Venturi effect. For this purpose, the wind speed and sunshine hours were monitored in the area where the building wind blows by the Venturi effect, and the power generation depending on system types, areas, and season was estimated. Consequently, the wind power generation system showed a larger amount of power per area than solar power. The wind power systems can generate larger power if wind power blades are installed along the height of the building. As a preliminary study, this study verified the feasibility of the system utilizing building wind and suggested follow-up studies.

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

A Study on Monitoring for based-Photovoltaic/Wind power Hybrid Generation System (가정용 태양광/풍력 Hybrid 발전시스템의 모니터링에 관한 연구)

  • Jung, Byeoung-Young;Cha, In-Su;Lim, Jung-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.365-368
    • /
    • 2006
  • The objective of this research is to investigate usage of 3KW photovoltaic-wind power hybrid generation system composed of 500W solar power generator and 400W wind power generator in a parallel circuit. In addition, solar radiation meter and wind monitor have been installed into each generation system to obtain the practical operating data that monitored in monthly, daily and hourly. These data that are independent to weather change and location would provide adequate generation output on average and cope with emergency situation in generation system In conclusion, based on this study, it could be considered for 3KW combined generation system to be gradually propagated to houses and small-size public facilities.

  • PDF

Design of 1kW Hybrid CC/CV PCS (정전류·정전압 기능의 1kW급 하이브리드 PCS 설계)

  • Lee, Jae Min
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.529-536
    • /
    • 2013
  • Lack of proper amount of sun lights and wind strength which are major factors of solar power and wind power system may cause poor electric power generation and decrease the lifetime of batteries that are major energy saving units. Because the PCS, which is essential in solar and wind power system, for small power generation system has been rarely developed an efficient and stable PCS for small power generation system is highly required. In this paper, we design a new constant current/constant voltage type hybrid PCS by which stand alone/grid connected operation with commercial power system is available and implement the designed PCS as a protype for performance verification.

The study for developing Wind and Photovoltaic power hybrid generation system and monitoring (풍력.태양광 복합 발전 시스템 개발 및 모니터링에 관한 연구)

  • Park, Kunhyun;Kang, Chulung;Lim, Jonghwan;Park, Euijang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.1-183.1
    • /
    • 2010
  • Recently, the increased interest in environmental issues has led to extensive research for development of green energy generation systems. However, only one type of generation system may not be sufficient for stand-alone mode because it cannot cope with the irregularity of weather condition. A hybrid generation system is able to make up for the weakness of each system. In this paper, a stand-alone hybrid wind/PV system is developed that can guarantee the stable energy supply. The system is suitable for power supply under 50W, and a vertical savonius type of blade was designed and applied for the wind generation system.

  • PDF

Estimation of the Optimal Generation Capacity of Solar-Wind Hybrid Power System for Economic Operations (태양광-풍력 복합발전시스템의 경제적 운용을 위한 최적 용량 산정에 관한 연구)

  • Lee, Seung-Chul;Moon, Un-Chul;Kwon, Byeong-Gook;Kim, Jong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2004
  • In this paper, a technique that estimate the optimal capacity of the solar-wind hybrid power system for minimizing the total monthly electric power expenses is presented. The hybrid power system is assumed to be operated in connection with the utility power system and electric bill be paid for the power not covered by the hybrid system generation. Monthly generation cost is estimated based on total life-cycle cost analysis. The monthly utility power bill is assumed to be increased quadratically in proportion with the net utility power consumption which is the difference between the total monthly load minus the hybrid system generations. Test results demonstrate applications potential of the proposed technique.