• Title/Summary/Keyword: Solar water heating

Search Result 254, Processing Time 0.026 seconds

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Performance Analysis of Solar Thermal System with Heat Pump for Domestic Hot Water and Space Heating (온수 급탕 및 난방을 위한 히트 펌프 태양열 시스템의 성능 분석)

  • Sohn, Jin-Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.49-62
    • /
    • 2018
  • This study aims to analyze the performance of solar thermal system with heat pump for domestic hot water and heat supply. There are four types of system. Systems are categorized based on the existence of a heat pump and the ways of controlling the working fluid circulating from the collector. Working fluid is controlled by either temperature level (categorized as system 1 and 2) or sequential flow (system 3 and 4). Heat balance of the system, the solar fraction, hot water and heating supply rates, and performance of heat pump are analyzed using TRNSYS and TESS component programs. Technical specifications of the main facilities are as follow; the area of the collector to $25m^2$, the volumes of the main tank and the buffer tank to $0.5m^3$ and $0.8m^3$, respectively. Heating capacity of the heat pump in the heating mode is set to 30,000 kJ / hr. Hot water supply set 65 liters per person each day, total heat transfer coefficient of the building to 1,500 kJ / kg.K. Indoor temperature is kept steadily around $22^{\circ}C$. The results are as follows; 6 months average solar fraction of system 1 turns out to be 39%, which is 6.7% higher than system 2 without the heat pump, indicating a 25% increase of solar fraction compared to that of system 2. In addition, the solar fraction of system 1 is 2% higher than that of system 3. Hot water and heating supply rate of system 1 are 93% and 35%, respectively. Considering the heat balance of the system, higher heat efficiency, and solar fraction, as whole, it can be concluded that system 1 is the most suitable system for hot water and heat supply.

Experimental Study on the Thermal Behavior of Solar Space Heating & Hot Water System in Apartment (아파트 적용 태양열 난방 및 급탕시스템의 열적 거동에 관한 실험연구)

  • Shin, U-Cherul;Baek, Nam-Choon;Kim, Jong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.127-134
    • /
    • 2006
  • In this paper, an experiment was carried out to investigate the thermal behavior and performance on a solar space heating & hot water system in an apartment. Measurement was continued for 6 months between January 1st 2004 and June 31th 2004. The results show that there is no problem in control and operation in case of connection this system with conventional space heating and hot water system, and that the thermal performance of this system and indoor thermal environment is good.

Analysis of Thermal Performance of a Solar Heating & Cooling System (태양열 냉.난방시스템의 열성능 분석)

  • Kwak, Hee-Youl;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of a solar heating & cooling system by means of the $200m^2$ evacuated tube solar collector. The simulation was carried out using the thermal simulation code TRNSYS with new model of a single-effect LiBr/$H_{2}O$ absorption chiller developed by this study. The calculation was performed for yearly long-term thermal performance and for two design factors: the solar hot water storage tank and the cold water storage tank. As a result, it was anticipated that the yearly mean system efficiency is 46.7% and the solar fraction for the heating, cooling and hot water supply are about 84.4 %, 41.7% and 72.4%, respectively.

Optimization Design of Solar Water Heating System based on Economic Evaluation Criterion using a Genetic Algorithm (유전알고리즘 이용 경제적 평가기준에 따른 태양열급탕시스템 최적화 설계에 관한 연구)

  • Choi, Doosung;Ko, Myeongjin;Park, Kwang-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.73-89
    • /
    • 2016
  • To assure maximum economic benefits and the energy performance of solar water heating systems, the proper sizing of components and operating conditions need to be optimized. In recent years, a number of studies to design optimally solar water heating systems have been tried. This paper presents a design method for optimizing the various capacity-related and installation-related design variables based on life cycle cost using a genetic algorithm. The design variables considered in this study included the types and numbers of solar collector and auxiliary heaters; the types of storage tanks and heat exchangers; the solar collector slope; mass flow rates of the fluid on the hot and cold sides. The suggested method was applied for optimizing a solar water heating system for an elementary school in Seoul, South Korea. In addition, the effectiveness of the proposed optimization method was assessed by analyzing the obtained optimal solutions of six case studies, each of which was simulated with different solar fractions. It is observed that a trade-off between the equipment cost and the energy cost results in an optimal design that yields the lowest life cycle cost. Therefore, it could be helpful to apply the optimal solar water heating system by comparing the various design solutions obtained by using the optimization method instead of the engineer's experience and intuition.

Performance Estimation of Hybrid Solar Air-Water Heater on Single Working of Heating Medium (복합형 태양열 가열기에서 열매체 단일운전에 따른 기기성능 평가)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.49-56
    • /
    • 2014
  • Research about hybrid solar air-water heater that can make heated air and hot water was conducted as a part of improving efficiency of solar thermal energy. At this experiment, ability of making heating air and hot water was investigated and compared with traditional solar air heater and flat plate solar collector for hot water when air or liquid was heated respectively. Comparing hybrid solar air-water heater that used in this experiment to other solar air heater studied already, it has a lower efficiency at same mass flow rate. Air channel structure, fin's shape and arrangement in the air channel result in these difference then the ability of air heating need to be improved with changing these thing. In case of making hot water, performance was shown as similar with traditional system although the air channels were established beneath absorbing plate. But the heat loss coefficient was shown higher value by installing of air channel. Also the performance of hot water making was shown lower value at same liquid mass flow rate with traditional flat plate solar collector for hot water. So the necessity of performance improvement at lower mass flow rate of each heating medium can be confirmed.

A Study on the Field Test of the Solar Heating System with Parabolic Solar Collectors Integrated the Roof of a Residential Building (지붕대체형 집광집열기를 이용한 태양열 난방시스템의 동절기 성능 평가)

  • Kim, Yong-Ki;Lee, Tae-Won;Yoon, Kwang-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. Despite the popularity of simple solar domestic hot water systems, active solar space heating remains, for various reasons, marginal. And thus, the aim of this paper is to demonstrate potentialities of solar assisted space heating systems, both technically and economically. From this study found that the solar heating system with CPC solar collectors integrated the roof of a single-story residential building shares $50{\sim}55%$ of the annual heating load.

A Computer Code for an Optimum Design of Solar Space and Domestic Hot Water Heating System (태양열주택 및 가정용 태양 온수시스템의 설계용 전산코드)

  • Im, D.J.;Chun, M.H.;Yoon, S.B.
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.37-42
    • /
    • 1984
  • A computer code for an optimum design of solar space and domestic hot water heating system has been developed. The f-chart method developed by S.A. Klein et al. has been incorporated in the present computer code. The main conclusions obtained from the present work may be summarized as follows: (1) In Seoul area, about 46% of the total heating load can be obtained from the solar collectors whose total surface area is about one-third of the total heating floor area. (2) In Pusan area, total area of solar collectors should be about half of the total heating floor area in order to obtain an equivalent solar fraction of Seoul. (3) In cheju area, on the other hand, only about 42% of the total heating floor area of solar collectors is needed to get the same solar fraction as in Seoul and Pusan. (4) In order to get the first 50% solar fraction, only about 10-14 collectors ($4'{\times}8'$ collectors) are required, whereas about 48 collectors are needed to obtain the solar fraction of 100%. That is, roughly 3.5-4.5 times greater number of collectors are required to increase the solar fraction from 50% to 100%. Therefore, it can be concluded that it is relatively inefficient and less economical to build a solar system whose solar fraction exceeds more than 50%.

  • PDF

The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating (온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

Analysis of Thermal Performance of Solar Hot-Water and Heating System with Baffle Storage Tank (태양열이용 Baffle형 축열탱크를 갖는 온수난방시스템의 열성능 해석)

  • Suh, Jeong-Se;Yi, Chung-Seub
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.768-773
    • /
    • 2009
  • A numerical study has been performed to investigate the thermal Performance of Solar heating system with baffle type of storage tank by using the commercial code TRNSYS. As a result, the solar fraction depends strongly on the efficiency and heat loss coefficient of solar collector as well as the heating capacity of house and the water temperature supplied to the shower. In addition, the solar fraction has been basically ranked to higher level in baffle type of storage tank than typical type of single storage tank for the range of operation condition.

  • PDF