• 제목/요약/키워드: Solar tracking

검색결과 449건 처리시간 0.023초

A Low Cost Maximum Power Point Tracking Technique for the Solar Charger

  • Nguyen, Thanh Tuan;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.5-6
    • /
    • 2012
  • In this paper, a simplified maximum power point tracking technique for the solar charger is presented. Main advantages of the proposed charger include low cost and optimized charge time. The maximum power point tracking method is used to deliver the maximum power from PV array to the battery thereby reducing the charge time. Moreover, the proposed technique which tracks the maximum power point by adjusting output current helps reduce the quantity of required number of sensors for the charger. The experimental protype was implemented by using an 80W PV array, a buck converter and a digital signal processor to verify the feasibility of the proposed method.

  • PDF

태양전지 최대전력점 추종제어를 위한 퍼지 제어기의 FPGA구현 (FPGA Implementation of Fuzzy Logic Controller for Maximum Power Point Tracking in Solar Power System)

  • 이우희;김형진;이흥주
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.106-111
    • /
    • 2007
  • In this study, we designed a digital fuzzy logic controller based on FPGA and microprocessor for MPPT of the sofar power generation system. A fuzzy algorithm to control the power tracking function of a boost converter has been built into the FPGA, and applied to the small scaled solar power generation system. The embodied controller showed a stable operation characteristic with the small output voltage ripple for the intensity change of solar radiation. This result proves that the implementation of the power tracking controller using FPGA is an effective way compared to the existing one using microprocessor.

추적식 수상 태양광 발전 시스템 성능 분석 (The Efficiency Analysis of Tracking-Type Floating PV System)

  • 양연원;정선옥;신현우;이길송
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

태양광원에 대한 수평방향 추적식 항로표지용 태양전지 시스템의 도입 타당성에 관한 연구 (A Study on Verifying the Validity of a Solar Cell System Following Sunlight in the Horizontal Direction for Aid to Navigation)

  • 전중성;김정훈;이용한
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 공동학술대회
    • /
    • pp.414-418
    • /
    • 2009
  • 본 연구는 방위각에 따른 태양전지의 전압실험으로서 태양광원을 수평방향으로 추적하는 시스템의 도입 타당성에 대한 연구이다. 고도각을 $30^{\circ}$로 고정하여 방위각이 다른 3개의 태양전지를 설치하고, 일조시간 동안에 각 전압을 측정하여 방위각별 전압의 차이여부를 통계적으로 검정하였다. 실험결과, 어느 한 방위의 태양전지에서 발생한 전압이 다른 방위 태양전지의 전압에 비해 우세한 시간대에서 그 평균 전압은 높았다. 또한 이에 대한 상대효율을 비교하면 $1.6{\sim}11.5%$의 높은 효율을 보였다. 따라서 항로표지용 태양광 발전에서 고정식 태양전지 시스템보다 수평방향의 추적식 태양전지의 시스템을 도입하는 것이 효율적임을 확인하였다.

  • PDF

고정형과 추적형 Evacuated CPC 집열기의 열성능 비교 (Comparison of the Thermal Performance with Stationary and Tracking Evacuated CPC Collectors)

  • 윤성은;김용;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.19-25
    • /
    • 2004
  • A numerical study is performed to investigate the effect of sun tracking on the thermal performance of the evacuated compound parabolic concentrator (CPC) collectors. The evacuated CPC collectors consist of a two-layered glass tube, a copper tube and a reflector. The collector has a copper tube as an absorber and a reflector inside a glass tube. The water is used as a working fluid. The length and the diameter of the glass tube are 1,700mm and 70mm, respectively. The length and the diameter of the copper tube are 1,700mm and 25.4mm, respectively. Ray tracing analysis is carried out in order to compare absorbed heat fluxes on the absorber surface of the stationary and tracking collectors. The collected energy is calculated and compared with that on a fixed surface tilted at $35^{\circ}$ on the ground and facing south. The results indicate that the collected solar energy of the sun tracking system is significantly larger than that of a stationary collector. The sun tracking evacuated CPC collectors show a better performance with an increase in the thermal efficiency of up to 14% compared with an identical stationary collector.

태양광 발전 시스템의 효율증대를 위한 Genetic Algorithm을 적용한 MPPT Control (Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system)

  • 최대섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1187-1188
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to operate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MPP tracking in a solar power generation system.

  • PDF

음영에 의한 손실을 고려한 태양광 발전 추적 시스템 (Photovoltaic tracking system considered loss by shadow)

  • 최정식;고재섭;정철호;김도연;정병진;정동화
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper a novel tracking system is described, regarding the influence of shadow between array, aimed at improving the efficiency of PV tracking system. Comparing with a building site versus capacity power, domestic solar powers have a limited siting. Therefore, each array interferes with the shadow of other arrays. The loss by influence of those shadow can be compensated for by means of control algorithm of the tracking device. The paper suggests a method controlling an altitude for length which is received the shadow influence of PV array. By using an azimuth of current solar position and the length between arrays, the controller of tracking device is able to calculate the length between actual arrays and make a comparison of the shadow length at a specific time with the length between arrays. When the shadow length is longer than the length between arrays, the controller of tracking device can adjust a position by compensating error altitude of the length between arrays at an altitude of current solar position. In the paper, we develop the control algorithm able to minimize the loss caused by the influence of shadow on the PV tracking system, and compared this with conventional output system. The controller has been tested in the laboratory with proposed algorithm and shows excellent performance

  • PDF

밸러스트 수 이동으로 태양을 추적하는 부유식 태양광 발전시스템 개발 (Note on the Development of Ballast Water Shifting System for Solar Tracking of the Floating Photovoltaic Plant)

  • 오정근;김준호;김승섭;김효철;류재문
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.290-299
    • /
    • 2016
  • The most powerful energy resource in nature is solar energy which becomes directly converted to electric power in worldwide. Most of the photovoltaic power plants are commonly installed on sunny side of the ground. Thus the installation of photovoltaic power plant could produce an unexpected adverse effect by sacrificing the productivity from green field or forest. To avoid these adverse effect floating photovoltaic plant has been devised and installed on inland reservoir. The photovoltaic plant could utilize ignored water surface without sacrificing the productivity of the ground. Additionally the photovoltaic efficiency has been reenforced by the cooling effect induced by the circulating air flow from water surface. The floating photovoltaic plant could be furnished solar tracking ability by tilting the system operated with the aid of the ballast system. This report is provided to introduce the design of the floating structure with solar panel which furnished solar tracking ability with the aid of ballast system.

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

퍼지 논리 제어를 기반으로 한 2축 태양광 추적시스템에 관한 연구 (A Study on a Two-Axis Solar Tracking System Based on Fuzzy Logic Control)

  • 안병원;이희배;배철오
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.531-537
    • /
    • 2015
  • 태양광 패널로부터 출력을 최대로 얻기 위해서는 신뢰성이 높은 태양광 추적 장치가 설계되어야 한다. 본 논문에서는 LabVIEW 프로그램을 이용하여 퍼지 제어를 기반으로 구현한 2축 태양광 추적 장치 시스템을 제작하여 그 성능에 대해서 알아보았다. 태양광 패널의 움직임을 제어하기 위한 구현된 퍼지 의사결정 시스템의 사용자 인터페이스를 통하여 모든 파라미터를 제어하고 확인할 수 있는 지능제어기와 기계적인 구동부분의 설계가 연구의 중심이 되고 있다. 실제 태양광 추적시스템을 개발하여 환경, 날씨, 계절 및 빛 상태와 같은 영향에 대해서 분석하였다. 태양광 추적장치는 실제 상황에서 시험하였고 시스템 동작과 관련된 모든 변수들은 기록되고 분석되었다. 제안한 태양광 추적시스템을 활용할 경우 고정식 패널에 비해 날씨에 따라 다르지만 최대 약 38% 정도의 더 높은 효율을 얻을 수 있어 자동으로 추적할 때 매우 좋은 결과를 얻을 수 있었다.