• Title/Summary/Keyword: Solar tracking

Search Result 449, Processing Time 0.026 seconds

Development of 2-Axis Solar Tracker with BLDC Motor-Cylinder Actuator and Hall Sensor Feedback (BLDC 모터-실린더 구동, 홀센서 피드백 방식의 2축 태양광 추적장치 개발)

  • Lho, Tae-Jung;Lee, Seung-Hyeon;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2334-2340
    • /
    • 2010
  • Sun position computed by Michalsky shows maximum $1.5^{\circ}$, $0.88^{\circ}$ and 2 minutes differences in azimuth, altitude, and sunrise and sunset times respectively compared with Korean Almanac. The 2-axis solar tracking system, which consist control panel with ATmega128 CPU, BLDC motor-cylinder actuator and 2-axis link mechanism, was developed. Computed azimuth and altitude of sun for a current time, and latitude and longitude of tracker position built are controlled in real time by BLDC motor-cylinder actuators comparing with the position feed-backed by Hall sensor. The use of BLDC motor is free in maintenance. Implementation of a home-return function by Hall sensor is to minimize the cumulative error.

Development of VPO MPPT of PV System Considering Shadow Influence (그림자 영향을 고려한 PV 시스템의 VPO MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.521-531
    • /
    • 2011
  • This paper presents the variable perturbation and observation(VPO) maximum power point tracking(MPPT) control of the photovoltaic(PV) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. MPPT control is a very important technique in order to increase an output and efficiency of the solar power generation. Conventional perturbation and observation(PO) and incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, this paper proposes the VPO MPPT algorithm which changes step size according to output variation. The response characteristics of VPO MPPT algorithm proposed in this paper compares with response characteristics of conventional MPPT algorithm about the radiation, temperature and shadow influence. The validity of the algorithm proposed in this paper prove through the results of the comparisons.

Applying Least Mean Square Method to Improve Performance of PV MPPT Algorithm

  • Poudel, Prasis;Bae, Sang-Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.15 no.3
    • /
    • pp.99-110
    • /
    • 2022
  • Solar photovoltaic (PV) system shows a non-linear current (I) -voltage (V) characteristics, which depends on the surrounding environment factors, such as irradiance, temperature, and the wind. Solar PV system, with current (I) - voltage (V) and power (P) - Voltage (V) characteristics, specifies a unique operating point at where the possible maximum power point (MPP) is delivered. At the MPP, the PV array operates at maximum power efficiency. In order to continuously harvest maximum power at any point of time from solar PV modules, a good MPPT algorithms need to be employed. Currently, due to its simplicity and easy implementation, Perturb and Observe (P&O) algorithms are the most commonly used MPPT control method in the PV systems but it has a drawback at suddenly varying environment situations, due to constant step size. In this paper, to overcome the difficulties of the fast changing environment and suddenly changing the power of PV array due to constant step size in the P&O algorithm, least mean Square (LMS) methods is proposed together with P&O MPPT algorithm which is superior to traditional P&O MPPT. PV output power is predicted using LMS method to improve the tracking speed and deduce the possibility of misjudgment of increasing and decreasing the PV output. Simulation results shows that the proposed MPPT technique can track the MPP accurately as well as its dynamic response is very fast in response to the change of environmental parameters in comparison with the conventional P&O MPPT algorithm, and improves system performance.

Development of an AVR MCU-based Solar Tracker (AVR 마이크로 컨트롤러 기반의 태양추적 장치 개발)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Hyun, Joon-Ho;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • An embedded two-axis solar tracking system was developed by using AVR micro controller for enhancing solar energy utilization. The system consists of an Atmega128 micro controller, two step motors, two step drive modules, CdS sensors, GPS module and other accessories needed for functional stability. This system is controlled by both an astronomical method and an optical method. Initial operation is performed by the result from the astronomical method, which is followed by the fine controlled operation using the signals from Cds sensors. The GPS sensor generates UTC, longitude and latitude data where the solar tracker is installed. A database of solar altitude, azimuth, and sunrise and sunset times is provided by UART (Universal Asynchronous Receiver/Transmitter).

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Resistive Current Mode Control for the Solar Array Regulator of SPACE Power System (인공위성 시스템을 위한 태양전지 전력조절기의 저항제어)

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.535-542
    • /
    • 2006
  • A large signal stability analysis of the solar array regulator system is performed to facilitate the design and analysis of a Low-Earth-Orbit satellite power system. The effective load characteristics of every controllable method in the solar array system are classified to analyze the large signal stability. Then, using the state plane analysis technique, the stability of various equilibrium points is analyzed. A nonlinear transformation algorithm, which changes the effective load characteristic of the solar array regulator as constant resistive load, is also proposed for the large signal stability. The proposed resistive current mode control system can control the solar array output for purposes such as peak power tracking control and battery charging control. For the verification of the proposed large signal analysis and resistive current mode control, a solar array regulator system consisting of two 100W parallel module buck converters has been built and tested using a real 200W solar array.

A Design of Solar Proton Telescope for Next Generation Small Satellite

  • Sohn, Jongdae;Oh, Suyeon;Yi, Yu;Min, Kyoung-Wook;Lee, Dae-Young;Seon, Jongho
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The solar proton telescope (SPT) is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS) which is determined for next generation small satellite-1 (NEXTSat-1). The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4). The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV) for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD) signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

Analysis on the power generation efficiency by the direct sunlight (태양광 발전 시스템별 직사광선에 의한 발전효율 분석)

  • Lee, Jaydy;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.89-91
    • /
    • 2008
  • The photovoltaic industry is growing at a tremendous speed. And it can be one of the key factors for success in the photovoltaic business to choose a suitable system, and setting it up right so as to get a maximum efficiency of the site. Therefore, it is regarded to be necessary to research the efficiency of systems to catch maximum photovoltaic energy. In this research, the expected power generation efficiencies are analysed, and compared with each other. This research considered the direct sunlight only, and the angle between the direction of solar panel and sunlight as factors to affect the power generation. Therefore, only rough analyses and estimations are found on 3 systems of fixed system, double-axes tracking system, and horizontal tracking system.

  • PDF

An Improved Battery Charging Algorithm for PV Battery Chargers (태양광 배터리 충전기를 위한 개선된 충전 알고리즘)

  • Kim, Jung-Hyun;Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.507-514
    • /
    • 2013
  • In this paper, the proposed charging algorithm is converted from the charging mode to compensate the transient state in the solar battery charging system. The maximum power point tracking (MPPT) control methods and the various charging algorithms for the optimal battery charging are reviewed. The proposed algorithm has excellent transient characteristics compare to the previous algorithm by adding the optimal control method to compensate the transient state when the charging mode switches from the constant current mode to the constant voltage mode based on the conventional constant-current constant-voltage (CC-CV) charging algorithm. The effectiveness of the proposed method has been verified by simulations and experimental results.

A study of Improved P&O MPPT Algorithm go with a Dynamic characteristic of Photovoltaic System (태양광 시스템의 동작특성에 따른 개선된 P&O MPPT 알고리즘 연구)

  • Lee, Seung-Hee;Jang, Ki-Young;Kim, Sang-Mo;Kim, Ki-Hyun;Yu, Gwon-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.107-110
    • /
    • 2009
  • The photovoltaic power system is effected by atmospheric condition. Therefore, The maximum power point tracking(MPPT) algorithm of the Photovoltaic (PV) power system is needed for high efficiency. Many MPPT techniques have been considered in past, but In this paper, the author analyzes widely known P&O MPPT algorithm and ImP&O algorithm, and presents new MPPT algorithm complementing weaknesses of other two algorithms.

  • PDF