DOI QR코드

DOI QR Code

Development of an AVR MCU-based Solar Tracker

AVR 마이크로 컨트롤러 기반의 태양추적 장치 개발

  • Oh, Seung-Jin (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Lee, Yoon-Joon (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Kim, Nam-Jin (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Hyun, Joon-Ho (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Lim, Sang-Hoon (Korea Institute of Energy Research) ;
  • Chun, Won-Gee (Department of Nuclear and Energy Engineering, Jeju National University)
  • Received : 2011.07.25
  • Accepted : 2011.12.16
  • Published : 2011.12.31

Abstract

An embedded two-axis solar tracking system was developed by using AVR micro controller for enhancing solar energy utilization. The system consists of an Atmega128 micro controller, two step motors, two step drive modules, CdS sensors, GPS module and other accessories needed for functional stability. This system is controlled by both an astronomical method and an optical method. Initial operation is performed by the result from the astronomical method, which is followed by the fine controlled operation using the signals from Cds sensors. The GPS sensor generates UTC, longitude and latitude data where the solar tracker is installed. A database of solar altitude, azimuth, and sunrise and sunset times is provided by UART (Universal Asynchronous Receiver/Transmitter).

본 연구에서는 AVR 마이크로 컨트롤러를 사용하여 임베디드 태양추적장치를 개발하였다. 본 시스템은 Atmega128 마이크로 컨트롤러, 스텝 모터, 스텝 드라이브 모듈, CdS 센서 그리고 GPS 모듈 및 기타 부품들로 구성되어 있다. 태양추적장치는 광학적 방법과 천문학적인 방법에 의해 작동된다. 최초 태양추적은 천문학적인 계산방법에 의해 얻어진 결과에 따라 이루어지고 CdS에 의해 미세 조정이 이루어진다. 태양추적장치가 설치된 지점에서 GPS는 UTC(Universal Time Coordinated)와 위도 및 경도 데이터를 마이크로 컨트롤러에 전송한다. 전송되어진 데이터에 의해 실시간으로 태양위치, 일출 및 일몰시간이 계산되어 진다. 태양 추적에 필요한 데이터들은 범용 비동기화 송수신기(UART)를 통하여 컴퓨터로 전송 받을 수 있다.

Keywords

References

  1. Clifford M.J, Eastwood D. Design of a novel passive solar tracker, Solar Energy. Elsevier 77, 269-280 (2004). https://doi.org/10.1016/j.solener.2004.06.009
  2. Duffie JA, Beckman WA. Solar Engineering of Thermal Processes, Wiley 13 (2006).
  3. New solar tracker, Solar Energy Materials & Solar Cells. Elsevier, 51, 113-120 (1998). https://doi.org/10.1016/S0927-0248(97)00276-6
  4. Canada J, Utrillas MP, Martinez-Lozano JA et al. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100nm range. Renewable Energy, Elsevier, 32, 2053-2068 (2007). https://doi.org/10.1016/j.renene.2006.11.001
  5. Naval Oceanography Portal. http://www.usno.navy.mil/USNO/astronomical-applications/data-services/data-services
  6. Aviation Formulary V1.44 by ED Willams. Http://wolliams.best.vwh.net/avform.htm
  7. 오승진 외, LabVIEW 적용 임베디드 태양추적장치 개발, Journal of Energy Engineering, 19, 128-135 (2010).
  8. 신동욱, 오창헌, 알기쉽게배우는 AVR Atmega128, Ohm사, 2005.

Cited by

  1. A Study on the Performance of a Hybrid Daylighting System Using AVR Microcontrollers vol.35, pp.6, 2015, https://doi.org/10.7836/kses.2015.35.6.001
  2. A study on the utilization status and technical development of solar tracking daylighting systems vol.25, pp.4, 2016, https://doi.org/10.5855/ENERGY.2016.25.4.062