• Title/Summary/Keyword: Solar tracking

Search Result 449, Processing Time 0.028 seconds

Analysis of Series and/or Parallel Converter for V-I Output Characteristics of Solar Cell

  • Yoo J.-H.;Han J.-M.;Ryu T.-G.;Gho J.-S.;Choe G.-H.;Chae Y.-M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.639-643
    • /
    • 2001
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm, because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. And this system is consisted a lot of solar cell unit. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. And then analysis of parallel and series characteristics was done for combination of VISC model.

  • PDF

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

Analysis and Control of PWM Convertor with V-I Output Chracteristic of Solar Cell (태양전지의 전기적 출력 특성을 갖는 PWM컨버터 설계 및 제어)

  • Yoo J.H;Han J.M;Ryu T.G;Gho J.S;Mok H.S.;Choe G.H
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.53-58
    • /
    • 2001
  • Solar energy has many advantage like as purity and infinity. Recently many researches about new energy source are processing in several places around the world. In this paper, the virtual implement of solar cell was proposed to solve the problems as reappearance and repetition of some situation in experiment of photovoltaic. To realize the VISC, mathematical model of solar cell for driving converter was studied and the buck converter were compared in viewpoint of tracking error of characteristic curve of solar cell using computer simulation. Also, Output characteristics of system analyzed through an experiment.

  • PDF

MPPT Control and Architecture for PV Solar Panel with Sub-Module Integrated Converters

  • Abu Qahouq, Jaber A.;Jiang, Yuncong;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1281-1292
    • /
    • 2014
  • Photovoltaic (PV) solar systems with series-connected module integrated converters (MICs) are receiving increased attention because of their ability to create high output voltage while performing local maximum power point tracking (MPPT) control for individual solar panels, which is a solution for partial shading effects in PV systems at panel level. To eliminate the partial shading effects in PV system more effectively, sub-MICs are utilized at the cell level or grouped cell level within a PV solar panel. This study presents the results of a series-output-connection MPPT (SOC-MPPT) controller for sub-MIC architecture using a single sensor at the output and a single digital MPPT controller (sub-MIC SOC-MPPT controller and architecture). The sub-MIC SOC-MPPT controller and architecture are investigated based on boost type sub-MICs. Experimental results under steady-state and transient conditions are presented to verify the performance of the controller and the effectiveness of the architecture.

MPPT Control using Power-Voltage Characteristic of Solar Array for Photovoltaic Applications (Solar Array의 전압-전력 특성을 이용한 MPPT 제어 시스템)

  • Kwon, Doo-Il;Ji, Sang-Keun;Yoo, Cheol-Hee;Han, Sang-Kyoo;Roh, Chung-Wook;Hong, Sung-soo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.323-325
    • /
    • 2008
  • Solar Array는 일사량 및 온도에 의해 얻을 수 있는 최대전력이 변화한다. 또한 Solar Array의 전압에 따라 출력 전력이 변화한다. 따라서 태양전지의 동작점을 최대 전력점에서 동작하게 하는 최대 전력점을 추적(MPPT:Maximum Power Point Tracking)하는 제어 시스템이 필요하다. 본 논문에서는 Solar Array의 전압과 전력의 상관관계를 이용하여 최대 전력점을 추종하는 제어 시스템을 제안한다. 이 방식은 빠르게 최대 동작점을 찾을 수 있고 높은 전력 변환 효율을 가지며 다른 방식에 비해 구성이 간단하다. 제안된 제어기법의 타당성을 검증하기 위하여 MPPT시뮬레이션과 실험을 수행하였다.

  • PDF

Design and Manufacture of Linear Fresnel Reflector Solar Thermal System (선형 프레넬 반사판 태양열 발전시스템의 설계 및 제작)

  • Kim, Haneol;Kim, Jongkyu
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • In this study, design and manufacture of LFR (Linerar Fresnel Reflector) system was performed for solar thermal absorption cooling. The LFR system was designed considering the expansion and convenience to be installed according to the cooling capacity of the applicable building. Twelve LFR modules with a total reflection area of $204m^2$ were installed. The automatic tracking system was applied to track the sun during the daytime.

The Manufacture and Output Characteristics of Small PV System Using Solar Tracking System (소용량 태양 추적장치를 이용한 PV 시스템제작 및 출력특성)

  • Lim, Hong-Woo;Park, Je-Woong;Choi, Mun-Han;Kim, Pyoung-Ho;Jang, Yong-Hae;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1328-1331
    • /
    • 2002
  • Nowaday, almost of practical energy is come from the fossil fuel, such as coal, oil and gas those are limited and caused the environmental pollution. For these reason. solar energy is come into notice as a new alternative energy source to overcome the shortage of electricity in the $future^{(1)}$. In this paper, small PV system using photo sensor for tracking sun is developed and is verified by experiments.

  • PDF

Control of a Novel PV Tracking System Considering the Shadow Influence

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.524-529
    • /
    • 2012
  • This paper proposes a novel control strategy of a PV tracking system considering the shadow influence. If distance of between PV arrays is not enough, shadow can be occurred to PV module. In PV system, if shadow is occurred to PV modules then PV modules operates reverses bias, and will eventually cause hot-spot and loss. To reduce loss by shadow influence, this paper proposes shadow compensation algorithm using distance between arrays and shadow length of array. The distance between arrays is calculated by using azimuth of solar, and length of array shadow is calculated using by altitude of solar. The shadow compensation algorithm proposed in this paper compares distance between arrays and length of array shadow. When the shadow length is longer than the distance between arrays, the algorithm adjusts altitude of array to avoid the shadow effects. The control algorithm proposed in this paper proves validity through compared with conventional algorithm and proposes experiment result.

Innovative Decision Reference Based Algorithm for Photovoltaic Maximum Power Point Tracking

  • Mehrnami, Siamak;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.528-537
    • /
    • 2010
  • A novel decision reference based method for the maximum power point tracking (MPPT) of PV arrays is presented in this paper. The proposed decision reference was derived from a simplified solar cell model. This method solves the problems of conventional MPPT algorithms, such as oscillation of the operating point at the steady state and confusion under rapidly changing insolation. It is shown by simulation and experimental results that the method properly tracks a rapidly changing insolation profile. The signal to noise ratio (SNR) of the new decision reference is also higher than those of conventional P&O and INC methods. An updating subroutine was included in the proposed MPPT algorithm to compensate for temperature and aging effects.

Analysis and study for MPPT algorithms in transformerless PV PCS (변압기 없는 태양광 PCS에서의 최대전력추종제어기법 분석)

  • Lee Kyung-Soo;Jung Young-Seck;So Jung-Hoon;Yu Gwon-Jong;Choi Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.606-609
    • /
    • 2004
  • Maximum power point tracking(MPPT) is usually used for a solar power system. Many maximum power tracking techniques have been considered in the past. The microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different solar arrays. In this paper, four MPPT algorithms are analyzed and studied. Perturbation and Observation(P&O), Incremental Conductance(IncCond), which are used from the past. Improved P&O and Two-mode , which are developed P&O and IncCond algorithms. Also, the author introduces grid-connected fransformerless PV PCS to apply MPPT control. MPPT efficiency is measured by changing irradiance from $0.1kW/m^2\;to\;1kW/m^2$ and simulation was performed for each MPPT algorithm.

  • PDF