• Title/Summary/Keyword: Solar tracking

Search Result 449, Processing Time 0.027 seconds

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.

Draft Proposal of Smart Outdoor Wear upon the Outdoor Wear Functionality Demand (아웃도어 웨어 기능성 요구에 따른 스마트 아웃도어 재킷 설계시안)

  • Paek, Kyung Ja;Lee, Jeong Ran
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.446-455
    • /
    • 2014
  • This study revealed the results related to the functionality of outdoor wear required when man and women in their 30s to 50s engage in outdoor activities. Based on the results of the survey, we proposed composition draft for a smart outdoor jacket with main functions of GPS device and light-emitting device using solar cell and EL. Absorption and release of sweat, functionality regarding rain and wind, and lightweightness, etc. from material functionalities of outdoor wear were found to be important. From function required in clothing for outdoor activity, location tracking, night glow, and lighting functions were found to be most important. For results investigating the necessity of the jacket's location tracking function and lighting function using solar cell, high scores of 3.9~4.0 were given. Purchase intentions for smart outdoor jacket with location tracking and lighting functions devised by this study were fairly positive and most responses indicated that the appropriate purchase price was between 200,000 to 300,000 won while possible problems of this smart outdoor jacket were listed in the order of washing inconvenience, high price, device weight, and discomfort in movement. The draft proposal to integrate with wearable devices for smart outdoor jacket prototype is as follows: Solar cell has been attached to the upper arm but placed inside a transparent pocket which has been detachable for washing convenience while the solar cell and controller have been integrated into a single unit. Using frequent movement exhibited by the arms, EL has been attached along the center line of the raglan sleeve for easy spotting when used as an emergency signal or for night lighting function during outdoor activity. GPS has been attached on the left sleeve so that the person can bend the left arm inward and operate the GPS screen with the right hand while walking or running outdoors.

A CONSTRUCTION OF THE REAL TIME MONITORING SYSTEM OF THE SOLAR RADIO DISTURBANCE 1. THE CONTROL SYSTEM OF THE RADIO TELESCOPE (태양전파 교란 실시간 모니터링 시스템 구축 1. 전파망원경 구동시스템)

  • 윤요나;이충욱;차상목;김용기
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.121-128
    • /
    • 2004
  • As the first step of the real time monitoring system of the solar radio disturbance, we constructed the control system of the solar radio telescope. An 1.8m antenna built by Korean Astronomy Observatory has been used, and the observed radio flux is transformed to the digital signal by the powermeter. We have also developed a computer program CBNUART in order to control the telescope system and the powermeter. As the sun rises, the telescope begins to observe the sun, and ends the observation automatically at sunset. The CBNUART enables the telescope automatically to go to the position of the sunrise for the beginning the observation and come back to the setposition after the ending the observation at the sunset. An active tracking routine is adopted in order to improve the tracking accuracy of the control system, and we used an optical telescope equipped in front of the antenna for control test. The tracking test shows that our control system can track with the accuracy of arc seconds, and the 50 minute pointing test shows that the pointing accuracy of right ascension and declination are 1.12 and 0.08 arc minutes respectively.

Study of Retrieving the Aerosol Size Distribution from Aerosol Optical Depths (에어로졸 광학깊이를 이용한 에어로졸 크기분포 추출 연구)

  • Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, aerosol size distributions were retrieved from aerosol optical depth measured over a range of 10 wavelengths from 250 to 1100 nm. The 10 wavelengths were selected where there is no absorption of atmospheric gases. To obtain the solar spectrum, a home-made solar tracking system was developed and calibrated. Using this solar tracking system, total optical depths (TODs) were extracted for the 10 wavelengths using the Langley plot method, and aerosol optical depths (AODs) were obtained after removing the effects of gas absorption and Rayleigh scattering from the TODs. The algorithm for retrieving aerosol size distributions was suggested by assuming a bimodal aerosol size distribution. Aerosol size distributions were retrieved and compared under various arbitrary atmospheric conditions. Finally, we found that our solar tracking spectrometer is useful for retrieving the aerosol size distribution, even though we have little information about the aerosol's refractive index.

The Concentrating Photovoltaic System using a Solar Tracker (태양위치 추적 장치를 이용한 집광형 태양광 발전시스템)

  • Yoo, Yeong-tae;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • The solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change. Also, The solar cells should be operated at the maximum power point. In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control. The result was less then 5% when compared the catalogue of solar cell module and the simulation through a mathematics modelling. The boost rate of boost converter was similar to 167 % with the simulation.

Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems (수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가)

  • Lee, Inju;Joo, Jin Chul;Lee, Chang Sin;Kim, Ga Yeong;Woo, Do Young;Kim, Jae Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • To evaluate the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems, the water quality variations with time and depth were monitored on both six sites for light blocking zones and four sites for light penetration zones after the installation of floating photovoltaic solar-tracking systems in Geumgwang reservoir at Anseong-si, Kyeonggi province. For one year with 16 monitoring events, water quality parameters [i.e., water temperature, pH, dissolved oxygen (DO), chlorophyll-a (Chl-a), and blue-green algae (BGA)] were monitored at depths of 0.3 m, 1 m, 3 m, and 5 m, while chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored at depths of 0.3 m. Statistically, the difference in all water quality parameters was not significantly different (p > 0.05) at the level of significance of 0.05. Based on these results, the water quality data from light blocking zones (site 1~6) and light penetration zones (site 7~10) were clustered, and were compared with time and depth. As a result, the difference in water temperature, pH, DO, COD, TN, TP, Chl-a, and BGA between light blocking zones and light penetration zones was not significant (p > 0.05) with different time and depth. For Chl-a and BGA, some data from light blocking zones greater than light penetration zones were temporary observed due to the severe drought, low water storage rate, and over growth of periphyton. However, this temporal phenomenon did not impact the water quality. Considering the small water surface area (${\leq}0.5%$) covered by floating photovoltaic solar-tracking systems, the mixing effect of whole Geumgwang reservoir caused by Ekman current and continuous discharge were more dominant than the effect of reduced solar irradiance. Further study is warranted to monitor the changes in water quality and aquatic ecosystems with greater water surface area covered by floating photovoltaic solar-tracking systems for a long time.

Design, Fabrication and temperature measuring experiments of solar collecting system using a single module reflectors (단일 모듈 반사경을 이용한 태양열 집열 시스템의 설계, 제작 및 온도측정 시험연구)

  • Yang, Byeong-Soo;Yang, Woo;Seo, Tae-Il;Son, Chang-Woo
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.19-24
    • /
    • 2019
  • Currently, the world is paying keen attention to the production of renewable energy along with environmental issues, and the share of renewable energy in the world is rising above that of nuclear power. Especially when Korea, which is heavily dependent on foreign countries, needs to reconsider its national competitiveness due to the recent high oil prices, the government's energy policy is to develop and use renewable energy that replaces fossil fuels. In particular, solar energy, the most actively studied and commercialized field of renewable energy, is the main research for solar energy and is commercialized and used. However, the efficiency of solar energy has already reached saturation. Studies are also focusing on increasing the reflectivity of solar energy to increase efficiency. Therefore, this paper proposes a solar collection system that can utilize solar energy rather than solar energy. The proposed solar heat collection system uses solar tracking systems to effectively collect solar energy, particularly those that can be easily produced using single-modular reflectors and have price competitiveness. In addition, temperature measurement experiments with temperature measuring sensors were conducted to ensure reliability in order to verify the results interpreted.

Design and Construction Experiences of Solar Thermal Chemical Reaction Hybrid Power Generation (태양열 화학반응 복합발전시스템의 설계 및 시공 사례)

  • Lee, Sang-Nam;Kang, Yong-Heack;Kim, Jin-Soo;Yoon, Hwan-Ki;Yu, Chang-Kyun;Kim, Jong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.688-692
    • /
    • 2007
  • Solar thermal power generation allows additional benefits of cheap thermal storage and easy hybridization with other fossil fuel-driven power generation. KIER has been performing the project for solar thermal chemical reaction hybrid power generation. The project is to build and operate the first solar thermal chemical reaction hybrid power generation system in Korea. For concentrating solar thermal energy $m^2$ dish type concentrator was adapted and a heliostat is installed for reflecting horizontal insolation to the dish concentrator. At the moment building the dish concentrator including mirror and heliostat with sun tracking system was completed and it's performance are being closely evaluated. This paper will introduce some detailed designs and construction procedures which we have experienced so far.

  • PDF

The Realization of MPPT Controller Using Fuzzy Controller for Photovoltaic System (퍼지제어기를 이용한 태양광발전시스템의 MPPT 제어기 구현)

  • Cho, Geum-Bae;Choi, Yeon-Ok;Baek, Hyung-Lae
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2004
  • PV system is easy to operate and maintain than the other power generating system since it generally contains no moving parts, operates silently and requires very little maintenance. A solar cell generates DC power from sunlight whose power is different at any instance according to condition of irradiation and temperature variables. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition This paper describes the experimental results of the PV system contain solar modules and a DC-DC converter(boost type chopper) using fuzzy controller. The experimental results show that the PV system always operates at maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component.

Concentrating Solar Collector for Drying Process (건조가공용(乾燥加工用) 태양열(太陽熱) 집열장치(集熱裝置)에 관(關)한 연구(硏究))

  • Lee, Byung-Hyuk
    • Solar Energy
    • /
    • v.6 no.1
    • /
    • pp.24-30
    • /
    • 1986
  • A concentrating solar collector of parabolic-cylindrical type is designed and constructed to provide a heat source of higher temperature for drying processes. Usually collectors of concentrating type require such peripheral auxiliary units as solar tracking system, heat medium circulation pump and temperature controller. However in this study, for simplification's sake in the maintenance of a collector system, it is intended to design a concentrating collector system which does not furnish these auxiliary units by adapting natural circulation system instead of foced circulation and by adjusting collector system to solar altitude manually and periodically. And based on the experimental data, a conceptual design for a heat sources of 50KWt thermal output is presented and discussed.

  • PDF