• Title/Summary/Keyword: Solar tracking

Search Result 449, Processing Time 0.03 seconds

A study on the utilization status and technical development of solar tracking daylighting systems (추적식 자연채광시스템 현황 및 기술 개발에 관한 연구)

  • Kim, Won Sik;Jeong, Hae Jun;Chun, Wongee;Han, Hyun Joo;Lim, Sang Hoon
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.62-73
    • /
    • 2016
  • Daylighting systems offer substantial advantages over conventional ones in illuminating the building interior. Especially, considering that lighting accounts for about 28% of total energy consumption in buildings, the use of daylighting systems deem very important in lessening the dependency on artificial lighting. This work has carried out a survey and analysis to explore the characteristics and current status of various daylighting systems with solar tracking features recently introduced in Korea.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.

A Design and Implementation of Control and Management System for Water Culture Device using Solar Tracking Method (광원 트래킹 기법을 이용한 수경재배기 제어 관리 시스템 설계 및 구현)

  • Park, Sung-Kyun;Jung, Se-Hoon;Oh, Min-Joo;Sim, Chun-Bo;Park, Dong-Gook;You, Kang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.231-242
    • /
    • 2014
  • It is throwing the spotlight on the cultivation crops about high quality crops and productivity improvement per unit area because of rapid climate change caused by global warming. Therefore, we propose a water culture management of circulation nutrient method control system applies to solar tracking method not using traditional method of deep flow technique and artificial light source. We design it in the form of the circulation nutrient method in waterway of a certain amount of nutrient solution and water flowed into the way of circular. In addition, we design a multistage structure in pyramid shape which be possible continuous photosynthesis action to crops of water culture bottom part. Also, solar tracking method is designed five sensor method of center hole sensor method for tracking shadow of solar light not using traditional two hole, four hole sensor method. Finally, through the water culture device applies to solar light tracking method was not introduced in existing study yet, we can reduce growth speed of crops which be possible continuous photosynthesis action to crops. Moreover, We can expect high productivity of per unit area which be possible all crops can be offered growth environment of same type by using form of pyramid shape of multistage structure without top or bottom part.

A Development of Sun Tracking Control System for Parabolic Trough Concentrator (PTC용 태양 추적 장치의 개발)

  • Park, Y.C.;Kwak, H.Y.;Kang, Y.H.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 1998
  • A sun tracking controller for PTC(parabolic trough concentrator) is a control system used to orient the concentrator toward the sun always, so that the maximum energy can be collected. The work presented here is a design and development of microprocessor based sun tracking control system for PTC. Sun tracking control system consists of a sun sensor and a single axis tracking control system. 80c196KC based control system consists of an analog input unit, 24V DC servomotor drive unit, I/O unit. Sun sensor has been constructed using photodiode and can detect the sun located within ${\pm}50^{\circ}$ measured from the sun sensor normal direction. The sun tracking system developed is being implemented and shows a good sun tracking performance.

  • PDF

Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency (반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.

Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics (10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.

A Study on Solar Cell Output Voltage Control for 3-Phase Utility Interactive Photovoltaic System (3상 계통연계형 태양광발전시스템의 태양전지 출력단 전압제어에 관한 연구)

  • Nam J. H.;Kang B. H.;Gho J. S.;Choe G. H.;Shin W. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.571-575
    • /
    • 2002
  • Generation of electrical energy faces many problems today. Solar power converters were used to convert the electrical energy from the solar arrays to a stable and reliable power source. The object of this paper is to analyze and design DC-DC converters in a solar energy system to investigate the performance of the converters. A DC-DC converter can be commonly used to control the power flow from solar cell to load and to achieve maximum power point tracking(MPPT), DC-AC converter can also be used to modulate the DC power to AC power being applied on common utility load. A DC-DC converter is used to boost the solar cell voltage to constant 360(V) DC link and to ensure operation at the maximum power point tracking, If a wide input voltage range has to be covered a boost converter is required. In this paper, author described that simulation and experimental results of PV system contain solar modules, a DC-DC converter(boost type chopper), a DC-AC converter (3-phase inverter) and resistive loads.

  • PDF

Insolation Modeling Using by GIS (GIS기법을 이용한 일사량 모델링)

  • Kim, Byung-Woo;Kang, In-Joon;Kim, Sang-Suk;Kwak, Jae-Ha
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.359-361
    • /
    • 2010
  • This research is thing about location choice of solar power generation equipment to increase efficiency of solar power generation equipment. In the case of current solar power generation equipment, location of large scale solar power generation equipment facilities choice or, have localized in small scale equipment by individual. This research uses various climatic elements of small scale area for efficient location choice of solar power generation facilities and quantity of solar radiation did back-tracking.

  • PDF

A Study on New PV Tracking System Including Load Dispersion

  • Lee, Sang-Hun;Song, Hyun-Jig;Park, Chan-Gyu;Song, Sung-Geon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.472-480
    • /
    • 2014
  • The In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through new coordinates transformation calculating the height and azimuth of the sun.

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu Tomonobu;Shirasawa Tomiyuki;Uezato Katsumi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed a algorithm, that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar insolations and avoids oscillations after reaching the maximum power point.

  • PDF