• 제목/요약/키워드: Solar system

검색결과 4,082건 처리시간 0.027초

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.

SPA에 의한 동적인 보트의 태양전지 효율 분석 (Efficiency Analysis Solar Cell of the Dynamic Boat's by SPA)

  • 한종호;이장명
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1529-1536
    • /
    • 2011
  • Recently, worldwide government policy is pursuing saving energy and preservation. add to this, the solar cells are getting the spotlight nonpolluting energy source, using a variety of products for solar cell. in this paper, we'll make solar tracking system for suitable of dynamic boat. we knew that general boats are using fixed solar cell, it's first time to use tracking system of solar cells for boats so it is hard to application. To solve this problem in this paper we use to a magnetic compass and GPS for suitable solar tracking system of dynamic movement and to analyze fixed and tracking solar system. frist. solar tracking device is designed two-axis control system. one-axis control system is taken a magnetic compass for making efficiency defence solar tracking sensor, two-axis control system apply GPS latitude and longitude data for SPA(Solar position algorithm) so we know the azimuth and altitude. it analyze data value of accuracy comparison from result. so the proposed algorithm confirm to have validity.

태양에너지 분야의 최근 연구동향- 2000년$\sim$2002년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Solar Energy Research - A review of Papers Published in the Korean Journal of Solar Energy between 2000 and 2002 -)

  • 유호천;장문석
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.107-119
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Solar Energy between 2000 and 2002 has been done. Focus has been put on current status of research in the aspect of Insolation. Solar Collector and Storage System, Solar Heating and Cooling System, Solar Cell and Lighting System, Active and Passive Solar Building, Heat Transfer in Solar Energy and Natural Energy. The conclusions are as follows. 1) Many studies on Insolation were conducted to optimize the usage of Solar Energy. 2) A review of the recent studies on solar thermal shows that there were many papers on solar collector and storage system. However, studies on the HVAC system using solar energy were relatively insufficient. 3) To produce high efficient solar cell. various experimental and numerical papers were published. However studies on control system, solar cell and lighting were seemed to be insufficient. 4) Studies on using solar energy in passive solar buildings were widely carried out, however, studies based on synthetic analysis of buildings and BIPV were insufficient. 5) Studies on heat transfer were mainly about heat exchanger, performance of heat pipe and multi air conditioner. 6) Studies on energy resources except for solar energy, such as hydraulic power and wind power etc. were very few.

경희대학교 태양관측시스템 (SOLAR OBSERVATIONAL SYSTEM OF KYUNGHEE UNIVERSITY)

  • 김일훈;김갑성
    • 천문학논총
    • /
    • 제13권1호
    • /
    • pp.39-54
    • /
    • 1998
  • We have developed solar observational system in the department of Astronomy & Space Sciences of KyungHee University, in order to monitor solar activities and construct solar database for space weather forecasting at maximum of 23rd solar cycle, as well as an solar education and exercise for undergraduate students. Our solar observational system consists of the full disk monitoring system and the regional observation system for H a fine structure. Full disk monitoring system is made of an energy rejection filter, 16cm refractor, video CCD camera and monitor. Monitored data are recorded to VHS video tape and analog output of video CCD can be captured as digital images by the computer with video graphic card. Another system for regional observation of the sun is made of energy rejection filter, 21cm Schmidt-Cassegrain reflector, H a filter with 1.6A pass band width and $375\times242$ CCD camera. We can observe H a fine structure in active regions of solar disk and solar limb, by using this system. We have carried out intense solar observations for a test of our system. It is found that Quality of our H a image is as good as that of solar images provided by Space Environmental Center. In this paper, we introduce the basic characteristics of the KyungHee Solar Observation System and result of our solar observations. We hope that our data should be used for space weather forecasting with domestic data of RRL(Radio Research Laboratory) and SOFT(SOlar Flare Telescope).

  • PDF

태양열 냉.난방 및 급탕 시스템 열성능 (Evaluation of thermal performance for solar cooling and heating system)

  • 곽희열;주홍진;이호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.203-208
    • /
    • 2009
  • This paper presents demonstration study results derived through field testing of a solar assisted cooling and heating system for the library of a cultural center building located in Gwangju, Korea. The area of demanded cooling and heating for building was about 350m2. Solar hot water was delivered by means of a 200m2 array of evacuated tubular solar collector (ETSC) to drive a single-effect (LiBr/H2O) absorption chiller of 10RT nominal cooling capacity. From March in 2008 to February in 2009, demonstration test were performed for solar cooling and heating system. After experiments and analysis, this study found that solar thermal system was 84% for the solar hot water supply and 12% for space heating and 4% for space cooling.

  • PDF

다기능 복합 솔라윈도우 시스템의 에너지성능평가 (The Energy Performance Evaluation of Multi-purpose Solar Window System)

  • 조일식;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.10-15
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window System built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. The reference model of simulation was made up to analysis energy performance on Solar Window system. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

Facade 일체형 태양열 집열기를 갖는 태양열/지열 하이브리드 시스템의 태양열 집열시스템 작동특성 연구 (A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector)

  • 백남춘;이진국;유창균;윤응상;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.69-76
    • /
    • 2010
  • In this study, the solar thermal and geo-source heat pump(GSHP) hybrid system for heating and cooling of Zero Energy Solar House(ZESH) was analyzed by experiment. The GSHP in this hybrid system works like as aback-up device for solar thermal system. This hybrid system was designed and installed for Zero Energy Solar House (KIER ZeSH) in Korea Institute of Energy Research. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH. The analysis was conducted as followings ; - the thermal performance of facade integrated solar collector - the on/off characteristics of solar system and GSHP - the contribution of solar thermal system. - the performance of solar thermal and ground source heat pump system respectively. - the meet of thermal load (space and water heating load). This experimental study could be useful for the optimization of this system as well as its application in house. This hybrid system could be commercialized for the green home if it is developed to a package type.

태양열 온수급탕 시스템의 TRNSYS 열성능 분석 (Performance Analysis of Solar Heating System for High Solar Fraction using TRNSYS)

  • 손진국
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.59-67
    • /
    • 2012
  • In this paper, performances of solar hot water supply systems are parametrically analyzed with the variations of solar collector area, slope of collector and volume of storage. All simulations are conducted by using TRNSYS computer program. Average solar fractions, collector efficiencies and temperatures of storage are investigated monthly as well as annually. For system analysis, the maximum value of monthly average solar fractions has a limitation of 90 percent. As a result, the designed solar thermal system with $6m^2$ collector area, $50^{\circ}$ slope and $0.36m^2$ storage volume could provide almost an annual average solar fraction of 72 percent. By increasing the storage volume to $0.42m^2$, the annual solar fraction of system increases up to 73 percent.

제로에너지 솔라하우스의 난방/급탕용 태양열 시스템 설계 및 분석 (Active Solar Heating System Design and Analysis for the Zero Energy Solar House)

  • 백남춘;유창균;윤응상;유지용;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.1-9
    • /
    • 2002
  • This study is on the design and evaluation of Zero Energy Solar House(ZeSH) including active solar heating system. Various innovative technologies such as super insulation, passive solar systems, super window, ventilation heat recovery system...etc were analyzed by individual and combination for the success of ZeSH. The ESP-r simulation program was used for this. Simulation results shows that almost 77% of heating load can be reduced with the following configuration of 200mm super insulation, super windows, passive solar system and 0.3 ventilation rate per hour. Active solar heating system (ASHS) was designed for the rest of the heating load including hot water heating load. The solar assisted heat pump is used for the auxiliary heating device in order to use air conditioner but not included in this study. The yearly solar fraction is 87% with a solar collector area of $28m^2$. The parametric studies as the influence of storage volume and collector area on the solar fraction was analyzed.

부하를 고려한 태양열온수시스템의 일간 집열효율에 대한 실험적 분석 (An Experimental Study on Daily Efficiency of Solar Collector with Heating Loads of Solar Water Heating System)

  • 이경호;주홍진;윤응상;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.19-27
    • /
    • 2012
  • This paper describes an experimental study on efficiency of solar collector in solar water heating system connected to hourly water heating load. In general, the functional form of solar efficiency is expressed as a function of fluid temperature entering solar collector, ambient temperature, and solar irradiance. When energy saving from solar heating of water heating system is analyzed on along-term basis such as one year with given solar irradiance data, simplified analysis is more convenient han detailed system simulation for quick assessment. However, the functional form of the efficiency is not convenient for approximately simplified energy analysis because the inlet temperature can be obtained through a detailed system simulation. In the study, solar collector efficiency is obtained with various daily water heating load sand daily solar irradiance using experimental tests. The study also considers large residential buildings such as apartment buildings for application of solar water heating systems. From test results, it is found that daily solar collector efficiency is proportional to daily water heating loads and daily solar irradiance. The data obtained from the study can be utilized to find a functional relation between daily solar irradiance and daily heating load in stead of collector inlet temperature for application of solar collector efficiency to long-term approximated energy analysis of solar heating system.