• Title/Summary/Keyword: Solar radiation prediction

Search Result 141, Processing Time 0.038 seconds

The Study on Prediction about the Optimal Installation Angle of Photovoltaic System (태양광 발전 시스템의 최적 설치 각도 예측에 관한 연구)

  • Kim, Jung-Hwan;Yu, Gwon-Jong;So, Jung-Hun;Cha, Han-Ju;Yu, Byung-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1092_1093
    • /
    • 2009
  • The measured solar radiation on tilted surfaces by all directions has been widely used as important solar radiation data in installing photovoltaic system. The photovoltaic systems is much affected by angle and direction of incident rays. The results obtained in this research could be used in installing optimal photovoltaic systems.

  • PDF

Orbit determination of moogunghwa satellite (무궁화위성의 궤도결정)

  • 박수홍;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.692-697
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future communication satellite, called "Moogunghwa", which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical geopotential term, lunar and solar gravity, drag force of the atmosphere and solar radiation pressure was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using EKF which is suitable for real-time orbit determination. The result shows that the characteristics of the satellite orbit has drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the position and velocity error , and state error standard deviation is reasonable.easonable.

  • PDF

통신위성에 작용하는 섭동력의 영향평가와 궤도결정

  • 박수홍;조겸래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.200-205
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future connumication satellite, called "Moogunghwa" , which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical term, lunar and solar gravity, drag force of the atmospher, and solar radiation pressure was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using Extended Kalman Filter which is suitable for real-time orbit determination. The result shows that the chacteristics of the satellite orbit has east-west and south-north drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the positon and velocity error, and state error standard deviation is reasonable.

The Development of the Short-Term Predict Model for Solar Power Generation (태양광발전 단기예측모델 개발)

  • Kim, Kwang-Deuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.

Improving the Accuracy of a Heliocentric Potential (HCP) Prediction Model for the Aviation Radiation Dose

  • Hwang, Junga;Yoon, Kyoung-Won;Jo, Gyeongbok;Noh, Sung-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs), flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP) prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA). However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015). In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1) real-time daily sunspot assessments, (2) predictions of the daily HCP by our prediction algorithm, and (3) calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.

Evaluation of Heat Waves Predictability of Korean Integrated Model (한국형수치예보모델 KIM의 폭염 예측 성능 검증)

  • Jung, Jiyoung;Lee, Eun-Hee;Park, Hye-Jin
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.277-295
    • /
    • 2022
  • The global weather prediction model, Korean Integrated Model (KIM), has been in operation since April 2020 by the Korea Meteorological Administration. This study assessed the performance of heat waves (HWs) in Korea in 2020. Case experiments during 2018-2020 were conducted to support the reliability of assessment, and the factors which affect predictability of the HWs were analyzed. Simulated expansion and retreat of the Tibetan High and North Pacific High during the 2020 HW had a good agreement with the analysis. However, the model showed significant cold biases in the maximum surface temperature. It was found that the temperature bias was highly related to underestimation of downward shortwave radiation at surface, which was linked to cloudiness. KIM tended to overestimate nighttime clouds that delayed the dissipation of cloud in the morning, which affected the shortage of downward solar radiation. The vertical profiles of temperature and moisture showed that cold bias and trapped moisture in the lower atmosphere produce favorable conditions for cloud formation over the Yellow Sea, which affected overestimation of cloud in downwind land. Sensitivity test was performed to reduce model bias, which was done by modulating moisture mixing parameter in the boundary layer scheme. Results indicated that the daytime temperature errors were reduced by increase in surface solar irradiance with enhanced cloud dissipation. This study suggested that not only the synoptic features but also the accuracy of low-level temperature and moisture condition played an important role in predicting the maximum temperature during the HWs in medium-range forecasts.

Characteristics and Error Analysis of Solar Resources Derived from COMS Satellite (기상청 천리안 위성 자료를 활용한 태양광 기상자원 특성 및 오차 분석)

  • Lee, Su-Hyang;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.59-73
    • /
    • 2020
  • The characteristics of solar resources in South Korea were analyzed by comparing the solar irradiance derived from COMS (Communication, Ocean and Meteorological Satellite) with in-situ ground observation data (Pyranometer). Satellite-derived solar irradiance and in-situ observation showed general coincidence with correlation coefficient higher than 0.9, but the satellite observations tended to overestimate the radiation amount compared to the ground observations. Analysis of hourly and monthly irradiance showed that relatively large discrepancies between the satellite and ground observations exist after sunrise and during July~August period which were mainly attributed to uncertainties in the satellite retrieval such as large atmospheric optical thickness and cloud amount. But differences between the two observations did not show distinct diurnal or seasonal cycles. Analysis of regional characteristics of solar irradiance showed that differences between satellite and in-situ observations are relatively large in metrocity such as Seoul and coastal regions due to air pollution and sea salt aerosols which act to increase the uncertainty in the satellite retrieval. It was concluded that the satellite irradiance data can be used for assessment and prediction of solar energy resources overcoming the limitation of ground observations, although it still has various sources of uncertainty.

A Study on Solar Power Generation Efficiency Analysis according to Latitude and Altitude (위도와 해발높이에 따른 태양광발전 효율 분석 연구)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.95-100
    • /
    • 2014
  • To solve the problem of conventional fossil energy, utilization of renewable energy is growing rapidly. Solar energy as an energy source is infinite, and a variety of research is being conducted into its utilization. To change solar energy into electrical energy, we need to build a solar power plant. The efficiency of such a plant is strongly influenced by meteorological factors; that is, its efficiency is determined by solar radiation. However, when analyzing observed generation data, it is clear that the generated amount is changed by various factors such as weather, location and plant efficiency. In this paper, we proposed a solar power generation prediction algorithm using geographical factors such as latitude and elevation. Hence, changes in generated amount caused by the installation environment are calculated by curve fitting. Through applying the method to calculate this generation amount, the difference between real generated amount is analyzed.

Distribution of Photovoltaic Energy Including Topography Effect (지형 효과를 고려한 지표면 태양광 분포)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • A photovoltaic energy map that included a topography effect on the Korean peninsula was developed using the Gangneung-Wonju National University (GWNU) solar radiation model. The satellites data (MODIS, OMI and MTSAT-1R) and output data from the Regional Data Assimilation Prediction System (RDAPS) model by the Korea Meteorological Administration (KMA) were used as input data for the GWNU model. Photovoltaic energy distributions were calculated by applying high resolution Digital Elevation Model (DEM) to the topography effect. The distributions of monthly accumulated solar energy indicated that differences caused by the topography effect are more important in winter than in summer because of the dependency on the solar altitude angle. The topography effect on photovoltaic energy is two times larger with 1 km resolution than with 4 km resolution. Therefore, an accurate calculation of the solar energy on the surface requires high-resolution topological data as well as high quality input data.

Red Tide Prediction in the Korean Coastal Areas by RS and GIS

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.332-335
    • /
    • 2006
  • Red tide(harmful algae) in the Korean Coastal Waters has a given a great damage to the fishery every year. However, the aim of our study understands the influence of meteorological factors (air and water temperature, precipitation, sunshine, solar radiation, winds) relating to the mechanism of red tide occurrence and monitors red tide by satellite remote sensing, and analyzes the potential area for red tide occurrence by GIS. The meteorological factors have directly influenced on red tide formation. Thus, We want to predict and apply to red tide formation from statistical analyses on the relationships between red tide formation and meteorological factors. In future, it should be realized the near real time monitoring for red tide by the development of remote sensing technique and the construction of integrated model by the red tide information management system (the data base of red tide - meteorological informations). Finally our purpose is support to the prediction information for the possible red tide occurrence by coastal meteorological information and contribute to reduce the red tide disaster by the prediction technique for red tide.

  • PDF