• Title/Summary/Keyword: Solar radiation calculation

Search Result 91, Processing Time 0.029 seconds

The Character of Distribution of Solar Radiation in Mongolia based on Meteorological Satellite Data (위성자료를 이용한 몽골의 일사량 분포 특성)

  • Jee, Joon-Bum;Jeon, Sang-Hee;Choi, Young-Jean;Lee, Seung-Woo;Park, Young-San;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • Mongolia's solar-meteorological resources map has been developed using satellite data and reanalysis data. Solar radiation was calculated using solar radiation model, in which the input data were satellite data from SRTM, TERA, AQUA, AURA and MTSAT-1R satellites and the reanalysis data from NCEP/NCAR. The calculated results are validated by the DSWRF (Downward Short-Wave Radiation Flux) from NCEP/NCAR reanalysis. Mongolia is composed of mountainous region in the western area and desert or semi-arid region in middle and southern parts of the country. South-central area comprises inside the continent with a clear day and less rainfall, and irradiation is higher than other regions on the same latitude. The western mountain region is reached a lot of solar energy due to high elevation but the area is covered with snow (high albedo) throughout the year. The snow cover is a cause of false detection from the cloud detection algorithm of satellite data. Eventually clearness index and solar radiation are underestimated. And southern region has high total precipitable water and aerosol optical depth, but high solar radiation reaches the surface as it is located on the relatively lower latitude. When calculated solar radiation is validated by DSWRF from NCEP/NCAR reanalysis, monthly mean solar radiation is 547.59 MJ which is approximately 2.89 MJ higher than DSWRF. The correlation coefficient between calculation and reanalysis data is 0.99 and the RMSE (Root Mean Square Error) is 6.17 MJ. It turned out to be highest correlation (r=0.94) in October, and lowest correlation (r=0.62) in March considering the error of cloud detection with melting and yellow sand.

A Study on the Applicability of Double-Sided Vertical Photovoltaic Panels Based on Energy Productivity Analysis (에너지 생산성 분석 기반 양면발전형 수직 태양전지의 활용 가능성 탐색)

  • Seung-Ju Choe;Seung-Hoon Han
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.84-97
    • /
    • 2023
  • This study aimed to investigate the feasibility and potential applications of utilizing bifacial photovoltaic (PV) panels from an architectural perspective. It also aimed to establish a foundational dataset for installation and operational guidelines for bifacial PV panels through a comparative analysis of energy production performance with single PV panels. The research encompassed several key steps, including a comprehensive literature review, calculation of solar surface radiation values, development of datasets for bifacial and single PV energy production, and a performance comparison between both approaches. The results of the study show that bifacial PV panels exhibit optimized energy production capabilities within the range of 40 to 80 degrees, contingent upon the specific installation location. Consequently, it is recommended that the installation of bifacial PV panels in Korea should primarily focus on southwest-to-west orientation. Furthermore, it was concluded that bifacial PV panels could contribute an equivalent or even superior level of energy production compared to single PV panels, even if their performance exhibited a marginally lower efficiency of 2% to 5% with an 18% power generation efficiency.

High Fidelity Calculation of Thermal Load in a Satellite Orbit (고정확도의 인공위성 궤도 열하중 계산 기법)

  • Kim, Min-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.898-906
    • /
    • 2017
  • This paper discusses the efficient high fidelity calculation of external thermal loads of a spacecraft on its orbit. Thermal loads to a spacecraft consist of three major components, direct solar radiation, earth reflection of solar rays, and earth irradiation. With the assumption that both earth reflection and earth emission are diffuse, thermal loads from earth surface divided into pieces of segments to satellite surfaces are individually calculated and summed over. By using analytical integration of both reflected and emitted heat load by earth, high rate of numerical convergence is achieved and the results are even exactly calculated in special cases. Moreover, KD tree ray tracing is employed in the calculation of thermal load to determine whether the radiated ray is obstructed or not by satellite structure.

A development of solar hot water system for anchovy proceeding (멸치가공을 위한 태양열 온수기 개발)

  • Kong, T.W.;Ji, M.K.;Lee, Y.H.;Chung, H.S.;Jeong, H.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.671-676
    • /
    • 2001
  • This study are development results of solar hot water system for anchovy proceeding. The heat amounts of boiling vessel are calculated 292.66W at forward and backward direction, and surface direction are calculated 373.14W. The polyenoic rate of anchovy are measured lower as high temperature, but monoenoic and polyacid are higher. Then the others. The maximum radiation of anchovy fishing grounds are shown $350kcal/m^2h$ at pm. 13:00, Chungdo in CHINA. Distributions of Velocity and temperature in boiling vessel are calculation. Solar collector and boiling vessel for anchovy proceeding ship are developed to automatic control system.

  • PDF

Distribution of Photovoltaic Energy Including Topography Effect (지형 효과를 고려한 지표면 태양광 분포)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • A photovoltaic energy map that included a topography effect on the Korean peninsula was developed using the Gangneung-Wonju National University (GWNU) solar radiation model. The satellites data (MODIS, OMI and MTSAT-1R) and output data from the Regional Data Assimilation Prediction System (RDAPS) model by the Korea Meteorological Administration (KMA) were used as input data for the GWNU model. Photovoltaic energy distributions were calculated by applying high resolution Digital Elevation Model (DEM) to the topography effect. The distributions of monthly accumulated solar energy indicated that differences caused by the topography effect are more important in winter than in summer because of the dependency on the solar altitude angle. The topography effect on photovoltaic energy is two times larger with 1 km resolution than with 4 km resolution. Therefore, an accurate calculation of the solar energy on the surface requires high-resolution topological data as well as high quality input data.

The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating (온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

A Study of the Sol-Air Temperature for the Calculation of Insulation in Cryogenic Storage Tank (저온용 저장탱크의 보온계산을 위한 Sol-Air 온도에 관한 연구)

  • Son, Byung-Jin;Maeng, Joo-Sung;Hong, Sung-Min
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.98-107
    • /
    • 1985
  • In this thesis, the Sol-Air temperature distribution for the side-wall of a cylindrical cryogenic storage tank made of nonhomogenious composite layer was studied, in order to calculate the thermal load by Newton's cooling law, when the solar radiation was applied upon the side wall. In the analysis, the atmospheric slab was assumed to be horizontal and infinitely large, and the Sol -Air temperature, which was found by the Net- Radiation method considering the longwave radiation wi th surroundings, was used for boundary condition. Energy equation and boundary conditions were normalized by the defined reference- temperature, and solved. The solutions were developed by the Fourier cosine series. Then, the Sol-Air temperature distribution for the side-wall of LNG storage tank was calculated.

  • PDF

Measurement of Mass Flow of Water in the Stem of Musk Melon by Sap Flow Gauge (열목지 경유센서에 의한 멜론 경유양의 측정)

  • 강곡명;양원모
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.268-274
    • /
    • 1998
  • The mass flow of water in the stem of melon measured by Sap Flow Gauge was compared with the actual flow calculated by the difference between supply and drainage nutrient water to investigate the possibility and accuracy of estimation of melon's transpiration in rockwool culture. The Sap Flow Gauge which was made with copper-constantan theromocouple and nichrome fiber by our research team, was attached to the 3rd node of melon. The outdoor temperature, room temperature, solar radiation and relative humidity were continually measured. The amount of supply and drainage nutrient water were simultaneously measured for calculation of practical consumption of nutrient water to compare with mass flow of sap. The measuring errors of Sap Flow Gauge were 0.3 to 31.8%, which were small at solar radiation of 20MJ.m$^{2}$.d$^{-1}$ . The mass flow of water was lower for the measured value by Sap Flow Gauge than the actual value at higher solar intensity, however it was higher at lower solar intensity The variation of error rate of each Sap Flow Gauge was 0.1 to 13.0%. The measuring error with Sap Flow Gauge was negatively related with solar intensity and temperature. Therefore, to measure more exactly the mass flow of sap for estimation of melon's transpiration, the compensation factor must be calculated.

  • PDF

Comparative analysis of the global solar horizontal irradiation in typical meteorological data (표준기상데이터의 일사량 데이터 비교 분석)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.102-109
    • /
    • 2009
  • The research on meteorological data in Korea has been carried out but without much consistency and has been limited to some areas only. Of relatively more importance has been the area in the utilization of the solar energy, however, the measurement of the global solar horizontal irradiation has been quite limited. In the current study, the actually measured value of the global solar horizontal irradiation from the meteorological data and the theoretically calculated value of the global solar horizontal irradiation from the cloud amount will be analyzed comparatively. The method of analysis will employ the standard meteorological data drafted by the Korean Solar Energy Society, the standard meteorological data from the presently used simulation program and the corresponding results have been compared with the calculated value of the global solar horizontal irradiation from the cloud amount. The results of comparing the values obtained from MBE(Mean Bias Error), RMSE(Root Mean Squares for Error), t-Statistic methods and those from each of the standard meteorological data show that the actually measured value of the meteorological data which have been converted into standard meteorological data with the help of the ISO TRY method give the monthly average value of the global solar horizontal irradiation. These values compared with the monthly average value from the IWEC from the Department of Energy of the USA show that the value of the global solar horizontal irradiation in the USA is quite similar. In the case of the values obtained from calculation from the cloud amount, the weather data provided by TRNSYS, except only slight difference, which means that the actually measured values of the global solar horizontal irradiation are significant. This goes to show that in the case of Korea, the value of the global solar horizontal irradiation provided by the Korea Meteorological Administration is will be deemed correct.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.