• Title/Summary/Keyword: Solar radiation analysis

Search Result 513, Processing Time 0.027 seconds

Correlation analysis of solar radiation and meteorological parameters on high ozone concentration (태양복사 및 기상요소의 고농도 오존형성에 대한 상관성 분석)

  • An, Jae Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.93-98
    • /
    • 2012
  • The concerns on high ozone concentration phenomenon is significantly growing in Seoul metropolitan area including the industry complex area, like Shiwha Banwol area. The aims of this research is the analysis of relationship between high concentrations of $O_3$ and solar radiation parameters in atmosphere. The understanding of the effects of solar radiation intensity, humidity, high air temperature on ozone concentration in a day is very useful to provide a direction for reducing of the high ozone concentration to a local government or a metropolitan government. The correlation analysis between maximum ozone concentration and various meteorological parameters in 2009 - 2011 carried out using IBM's SPSS program. The results showed that the mean correlations coefficient (R) between daily Ozone maximum and solar radiation resulted R = 0.64 during 2011. May - September in 10 air pollution stations. In case of correlations between daily ozone maximum and relative humidity showed negative correlation R = -0.61. The correlation analysis with mean air temperature during 1-3 PM resulted R = 0.29. This low correlation coefficient could be corrected by using of categorized data of ozone concentration. The daily maximum ozone concentration is more dependent on peak solar radiation and high air temperature during 1-3 PM than its simple daily maximum values. The results of this research would be used to develop the high ozone alert system around Seoul metropolitan area. This correlation analysis could be partially integrated to prediction of ozone peak concentration in connection with other methods like classification and regression tree(CART).

A Study on the Solar Radiation Analysis for Components and Classified Wavelength in Korea (국내 태양광자원의 성분 및 파장별 분석에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • Knowledge of the solar radiation components and classified wavelength data are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new PV cell can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating PV system users or designers as well as by research institutes. It is essential to utilize the solar radiation data as application and development of solar energy system increase. Consider able efforts have been made constructing a standard data base system from measure data.

The Study on the Optimal Angle of the Solar Panel using by Solar Radiation Model (태양복사모델을 이용한 태양전지판의 최적 경사각에 대한 연구)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.64-73
    • /
    • 2012
  • The angle of solar panels is calculated using solar radiation model for the efficient solar power generation. In ideal state, the time of maximum solar radiation is represented from 12:08 to 12:40 during a year at Gangneung and it save rage time is12:23. The maximum solar radiation is 1012$W/m^2$ and 708$W/m^2$ inc lear sky and cloudy sky, respectively. Solar radiation is more sensitive to North-South (N-S) slope angle than East-West (E-W) azimuth angle. Daily solar radiation on optimum angle of solar panel is higher than that on horizontal surface except for 90 days during summer. In order to apply to the real atmosphere, the TMY (typical meteorological Year) data which obtained from the 22 solar sites operated by KMA(Korea Meteorological Administration) during 11 years(2000 to 2010) is used as the input data of solar radiation model. The distribution of calculated solar radiation is similar to the observation, except in Andong, where it is overestimated, and in Mokpo and Heuksando, where it is underestimated. Statistical analysis is performed on calculated and observed monthly solar radiation on horizontal surface, and the calculation is overestimated from the observation. Correlationis 0.95 and RMSE (Root Mean Square Error) is10.81 MJ. The result shows that optimum N-S slope angles of solar panel are about $2^{\circ}$ lower than station latitude, but E-W slope angles are lower than ${\pm}1^{\circ}$. There are three types of solar panels: horizontal, fixed with optimum slope angle, and panels with tracker system. The energy efficiencies are on average 20% higher on fixed solar panel and 60% higher on tracker solar panel than compared to the horizontal solar panel, respectively.

Prediction of Daily Solar Irradiation Based on Chaos Theory (혼돈이론을 이용한 일적산 일사량의 예측)

  • Cho, S. I.;Bae, Y. M.;Yun, J. I.;Park, E. W.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2000
  • A forcasting scheme for daily solar irradiance on agricultural field sis proposed by application of chaos theory to a long term observation data. It was conducted by reconstruction of phase space, attractor analysis, and Lyapunov analysis. Using the methodology , it was determined whether evolution of the five climatic data such as daily air temperature , water temperature , relative humidity, solar radiation, and wind speed are chaotic or not. The climatic data were collected for three years by an automated weather station at Hwasung-gun, Kyonggi-province. The results showed that the evolution of solar radiation was chaotic , and could be predicted. The prediction of the evolution of the solar radiation data was executed by using ' local optimal linear reconstruction ' algorithm . The RMS value of the predicting for the solar radiation evolution was 4.32 MJ/$m^2$ day. Therefore, it was feasible to predict the daily solar radiation based on the chaos theory.

  • PDF

Revaluation of Solar Radiation Resources in Korea (국내 태양에너지 자원의 재평가)

  • Jo, Dok-Ki;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.153-156
    • /
    • 2006
  • The domestic solar radial ion data have been measured at 16 different sites all over the country since the beginning of 1980. It is very important that the fundamental data for the estimation and assessment of local solar radiation can be secured this project. In order to estimate available energy resource from solar radiation, it is necessary to have enough data, more than 30 years In any country. However since we have collected solar radiation(global radial ion including direct normal radiation) data only for 10 years we still need to measure insolation to secure the reliability and standardization of measured local solar radial ion data. In brief, the major activities on this R&D include rout me maintenance of the national network for insolation data measurement, evaluation of the collected data, and reliability enhancement for assessing the quality of solar radiation data as well.

  • PDF

Evaluation of Typical Solar Radiation Data by the TRY Methodology (TRY 방법론에 의한 표준일사량데이터 평가)

  • Yoo, Ho-Chun;Lee, Gwan-Ho;Kim, Kyoung-Ryul;Park, So-Hee
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.23-28
    • /
    • 2007
  • Limited fossil fuels and unstable energy supply are considered as one of the critical problems in architecture requiring large amounts of energy. In order to this challenge, environment-friendly architecture design is required. Clear data should be prepared to apply solar energy to architecture aggressively and properly. This study used FS statistical analysis data regarding average daily solar radiation of Seoul observed over 20 years to find out standard year and standard daily solar radiation. This study also aims to compare and evaluate an appropriate method of selecting a standard year which is too close to measurement value through comparison and analysis with daily solar radiation acquired by applying overseas researchers' suggesting weight factor. As a result, the data nearest to measurement value of daily solar radiation was UK CIBSE TRY(TYPE 2) displaying 0.100in t-statistic index. For UK CIBSE TRY(TYPE 2), weight factor was applied to three climatic elements except relative humidity. TYPE 1 and TYPE 3 recorded 0.343 and 0.367, respectively, showing higher record of t-statistic than TYPE 2. TYPE 1 was calculated through FS statistical value of single data about daily solar radiation with other climatic elements excluded. For TYPE 3, relative humidity was added to TYPE 2. In particular, since TYPE 2 was closer to the measurement value compared to the others, it is necessary to consider relationship with other climate elements if other climate elements are added.

The analysis of solar radiation to solar plant area based on UAV geospatial information system (UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • Recently the construction of solar plant showed a steady growth in influence of renewable energy policy. It is very important to determine the optimal location and aspect of solar panel using analyzed data of solar radiation to solar plant area beforehand. This study analyzed solar radiation in solar plant area using DEM acquired from UAV geospatial information. Mean solar radiation of 2017 was calculated as $1,474,466W/m^2$ and total solar radiation of 2017 considering solar plant area showed $33,639MW/m^2$ on analyzed result. It is important to analyze monthly solar radiation in aspect of maintenance works of solar plant. Monthly solar radiation of May to July was calculated over $160,000W/m^2$ and that of January to February and November to December showed under $80,000W/m^2$ in monthly solar radiation analysis of solar plant area. Also this study compared with solar radiation being calculated from UAV geospatial information and that of National Institute of Meteorological Sciences. And mean solar radiation of study area showed a little high in comparison with whole country data of National Institute of Meteorological Sciences, because the 93.7% of study area was composed of south aspect. Therefore this study can be applied to calculate solar radiation in new developed solar plant area very quickly using UAV.

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

An Analysis of Heat Losses from Receivers for a Multifaceted Parabolic Solar Collector (접시형 태양열 집광시스템용 흡수기의 열손실 해석)

  • Ryu, S.Y.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.61-73
    • /
    • 2000
  • Heat losses from receivers for a dish-type solar energy collecting system are numerically investigated. The analytical method for predicting conductive heat loss from a cavity receiver is used. The Stine and McDonald Model is used to estimate convective heat loss. Two kinds of techniques for the radiation analysis are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. Based on the heat loss analysis, the performance of two different receivers for multifaceted parabolic solar collectors with several flat facets can be estimated, and the optimal facet size is obtained.

  • PDF

A Study on Glazing Ratio of Certified Green Building Apartment (국내 친환경 아파트의 채광창 면적비에 관한 연구)

  • Kim, Sang-Bum;Park, Jong-Hoon;Yang, Byoung-E
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.95-100
    • /
    • 2010
  • Buildings receive solar radiation through windows and the solar radiation helps to save heating energy in winter. Therefore the bigger the glazing ratio is, the larger the amount of solar radiation we can receive. In this study we analysed the glazing ratio of Certified Green Building Apartments. And we verified whether the glazing ratio reflects energy saving through accepting solar radiation with correlation analysis. For glazing ratio analysis, we selected 116 apartment buildings of 19 apartment complexes that certified in 2008-2009 and took pictures of outside windows of the buildings. After that, we analysed the building's glazing ratio with 4 azimuth and checked distinction of the glazing ratio between 6 coupled azimuths. And we analysed the correlation between importance order of azimuth for energy saving and the glazing ratio change with the azimuth. The analysis showed that the glazing ratio does not reflect energy saving through accepting solar radiation.