• Title/Summary/Keyword: Solar power plant

Search Result 223, Processing Time 0.027 seconds

A study on the development of a virtual power plant platform for the Efficient operation of small distributed resources (소규모 분산자원의 효율적 운용을 위한 가상발전소 플랫폼 개발)

  • Kim, Hee-Chul;Hong, Ho-Pyo
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.365-371
    • /
    • 2021
  • In this study, The Virtual Power Plant (VPP) solution platform considered in this study minimizes the cost and investment risk associated with the construction of power generation and transmission facilities. In addition, it includes a Demand Response (DR) program operation function to meet consumers' electricity demand. With the introduction of VPP, it is possible to provide more eco-friendly and efficient power by responding to changes in consumer load in real time through existing generators and DR programs without large-scale facility investment in power generation and transmission/distribution sectors. In order to link the communication device to the solar power and ESS linkage device, it is necessary to transmit data in the control/state between the device device and the edge system and develop an IoT device and interworking platform (OneM2M).

태양열 발전 기술의 동향과 전망

  • Kim, Dong-Yun;Kim, Gyeong-Nam
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • Concentrated solar power(CSP) is receiving attention for its ability to generate dispatchable power from heat stored in thermal energy storage(TES). There are currently four types of CSP technology, however experts expect that only parabolic trough and solar tower are to survive from the market due to its higher efficiency and larger capacity in storage. While the initial cost for installing CSP plant is still expensive, the experts expect that investment cost of CSP would decline to the level which would be competitive with PV or wind in the near term future. In addition, further growth in its installation capacity is expected due to the United States and China's aggressive investments in CSP.

  • PDF

Development of Arc Detection Algorithm for 50 kW Photovoltaic System (50kW 태양광 설비의 아크 검출 알고리즘 개발)

  • Kim, Sang-Kyu;Lee, Chang-Sung;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • In this paper, we developed an algorithm to detect arc of PV power plant through frequency analysis. For arc detection based on frequency analysis, the filter should be designed to emphasize the difference between the arc state and the normal state. Therefore, in this paper, we analyzed the arc detection performance according to various filter structures. The arc detection algorithm developed in this paper extracts the filtering signal on current by using various filters and then calculates the frequency components and total energy using the FFT. In the final step, the arc is detected using the calculated energy magnitude. In order to verify the performance of the proposed arc detection algorithm, experiments were conducted on 51 kW solar inverters connected to power line. Through various experiments, it was confirmed that the proposed method effectively detects the arc.

Test of Fault Detection to Solar-Light Module Using UAV Based Thermal Infrared Camera (UAV 기반 열적외선 카메라를 이용한 태양광 모듈 고장진단 실험)

  • LEE, Geun-Sang;LEE, Jong-Jo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.106-117
    • /
    • 2016
  • Recently, solar power plants have spread widely as part of the transition to greater environmental protection and renewable energy. Therefore, regular solar plant inspection is necessary to efficiently manage solar-light modules. This study implemented a test that can detect solar-light module faults using an UAV based thermal infrared camera and GIS spatial analysis. First, images were taken using fixed UAV and an RGB camera, then orthomosaic images were created using Pix4D SW. We constructed solar-light module layers from the orthomosaic images and inputted the module layer code. Rubber covers were installed in the solar-light module to detect solar-light module faults. The mean temperature of each solar-light module can be calculated using the Zonalmean function based on temperature information from the UAV thermal camera and solar-light module layer. Finally, locations of solar-light modules of more than $37^{\circ}C$ and those with rubber covers can be extracted automatically using GIS spatial analysis and analyzed specifically using the solar-light module's identifying code.

Improvement of Efficiency of Kalina Cycle and Performance Comparison (Kalina 사이클의 효율 향상 방안 및 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan;Son, Chang-Min;Seol, Sung-Hoon;Lee, Ho-Saeng;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.11-19
    • /
    • 2015
  • In this paper, EP-Kalina cycle applying liquid-vapor ejector and motive pump is newly proposed. In this EP-Kalina cycle, the liquid-vapor ejector is used to increase pressure difference between inlet and outlet of the turbine. Also the motive pump enhances the performance of liquid-vapor ejector, resulting in increase of system efficiency of OTEC cycles. The comparison cycles in this study are basic, Kalina, EKalina and EP-Kalina ones. The pump work, net power, APRe, APRc, TPP and system efficiency of each cycle are compared. In case of net power, EP-Kalina cycle is lowest among the cycles due to the application of the motive pump. But, the net power difference of cycles seems to be minor since the pump work of cycles is merely about 1kW, compared to turbine gross power of 20kW. The system efficiency of EP-Kalina cycle shows 3.22%, relatively 44% higher than that of basic OTEC cycle. Therefore, the system efficiency is increased by applying the liquid-vapor ejector and the motive pump. Additional performance analysis is necessary to optimize the proposed EP-Kalina cycle.

A Feasibility Study on Geothermal Power Plant in Korea (한국형 지열발전 타당성 연구)

  • Lim, Hyo-Jae;Kwon, Jung-Tae;Kim, Geum-Soo;Chang, Ki-Chang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.39-44
    • /
    • 2009
  • Geothermal energy is the heat contained in the earth and its internal fluids. Geothermal energy is stored as sensible or latent heat. Supplied by both internal and external sources, it represents a vast supply which is only started to be tapped for generation of electric power. In general, this is natural dry or wet medium to high enthalpy steam at temperatures above $150^{\circ}C$. For some time, binary systems employing substances with a lower boiling point than water in a secondary circuit have been used to generate vapor for driving turbines at a lower temperature level. The utilization of binary plants and the possibility of production from enhanced geothermal systems can expand its availability on a worldwide basis. The geothermal electricity installed capacity is approaching the 10,000GW threshold. Geothermal energy is not present everywhere, but its baseload capability is a very important factor for its success.

  • PDF

An Analysis Study on Desuperheater valve attachment on Multi Water Spray Nozzles (다중 물 분사 노즐이 장착된 감온밸브의 해석 연구)

  • Lee, Deok-Gu;Cho, Haeng-Hoon;Cho, Nam-Cheol;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.74-79
    • /
    • 2009
  • The generation of electric power and plant facilities have been attempting to improve energy efficiency with many efforts as those being basis of our country's economy. In particular, the CHP(Combined Heat Power plant) system, is producing the electricity and process steam, has generally been using for the cogeneration plants. When CHP system operates, the steam has to maintain the high temperature and high pressure in order to have high efficiency of electric power production as much as possible. In addition, the exhausted steam from the turbine has to reform proper temperature to use the needed process. The major purpose of desuperheater is that the superheated steam changes into the saturated steam because it is more efficient and suitable for using the process, furthermore, it is more convenient and stable regarding the process temperature control. The design of the desuperheater obtained through the experiment and preceding analysis. This paper is verified by analysis that water spray nozzle(${\Phi}$=28mm) shows the best ability under the real power plant condition.

  • PDF

Compensation of Sun Tracking Error caused by the Heliostat Geometrical Error through the Canting of Heliostat Mirror Facets (반사거울 설치 방향 조정에 의한 Heliostat 기구오차에서 기인하는 태양추적오차의 보정)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.22-31
    • /
    • 2009
  • Canting is the optical alignment of mirror facets of heliostat such that the heliostat could focus the energy as a unit concentrator. Canting could improve the optical performance of heliostat and thus improves the efficiency of heliostat and ultimately improves the efficiency of the solar thermal power plant. This study discusses the effect of mirror canting, especially off-axis canting, used to compensate the sun tracking error caused by the heliostat geometrical errors. We first show that the canting could compensate the sun tracking error caused by the heliostat geometrical errors. Then we show that the proper canting time could exist, depending on the heliostat location. Finally we show how much the sun tracking performance could be improved by canting, by providing RMS sun tracking error. The limitation and caution of using canting to improve the sun tracking performance are also discussed.

A Study on Computer Simulation to Investigate Correlations between Temperature Controlling Effect of Green Roof System and the Photovoltaic Power Generation Efficiency (옥상녹화시스템의 기온조절효과와 태양광발전효율간의 상호연관성 규명을 위한 전산해석연구)

  • Kim, Tae Han;Park, Sung Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.70-79
    • /
    • 2013
  • These day cities experience serious climatic changes due to environmental load caused by disturbance in the circulation systems of water resources and energy. As technological improvement to respond to various climatic changes and disasters are also requested in the field of construction, inter-disciplinary studies linked to the establishment of sustainable environmental control and energy systems is required in a consilient perspective. This study aims to infer correlations in the impact of environmental changes caused by rooftop greening system on the photovoltaic power generation efficiency through computer simulation in an integrated perspective. By doing so, it seeks to provide basic study for developing a photovoltaic system integrated with building revegetation that is sustainable in environmental and resource aspects. A simulation showed that, in the case of sunshine hours in June, the green surface indicated temperature lowering effects of $9.19^{\circ}C$ on average compared to the non-green surface and temperature was $9.81^{\circ}C$ lower. Due to such greening effects, at the highest sunlight timepoint in June, Pmpp improved 119W and heat loss rate dropped 7.8%.

Preliminary Simulation Study on 1 MWe STP System in China (중국 1 MWe급 태양열발전시스템에 대한 기초 운전해석)

  • Yao, Zhihao;Wang, Zhifeng;Kang, Yong-Heack;Kim, Jong-Kyu;Wei, Xiudong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.698-701
    • /
    • 2007
  • DAHAN, the first 1 MWe Solar Power Tower system locates north to Beijing where nearby The Great Wall is now under construction with cooperation between China and Korea. Results in predicting the preliminary performance of this central receiver system are presented in this paper. Operating cycles under some typical weather condition days are simulated and commented. These results can be used to assess the impact of alternative plant designs or operating strategies on annual energy production, with the final objective being to optimize the design of central receiver power plants. Two subsystems are considered in the system simulation: the solar field and the power block. Mathematic models are used to represent physical phenomena and relationships so that the characteristics of physical processes involving these phenomena can be predicted. Decisions regarding the best position for locating heliostats relative to the receiver and how high to place the receiver above the field constitute a multifaceted problem. Four different kinds of field layout are designed and analyzed by the use of ray tracing and mathematical simulation techniques to determine the overall optical performance ${\eta}_{field}$ and the spillage ${\eta}_{spill}$.The power block including a Rankine cycle is analyzed by conventional energy balance methods.

  • PDF