• 제목/요약/키워드: Solar light

검색결과 1,241건 처리시간 0.03초

페이즈 필드법을 이용한 박막형 태양전지의 광포획층 설계 (Design of Light Trapping System of Thin Film Solar Cell Using Phase Field Method)

  • 허남준;유정훈
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.973-978
    • /
    • 2014
  • 본 연구는 페이즈 필드법 기반으로 하는 위상최적화를 이용하여 박막형 태양 전지의 광포획 구조의 반사층 설계를 목표를 하였다. 이를 위하여 입사된 빛이 설계영역인 반사층에서 반사되어 원하는 방향으로 진행하도록 하고자 하였다. 또한 같은 방법을 근적외선 영역의 반사판의 설계에 적용한 적외선 피탐지 구조의 개념 설계를 수행하였으며, 페이즈 필드법 기반의 결과와 밀도법 기반의 결과를 비교하였다. 목적함수는 에너지의 흐름을 나타내는 포인팅 벡터값의 최대화로 설정하였고, 반사된 빛의 방향을 조절하기 위하여 지정된 측정영역에서 값을 측정하였다. 본 연구의 유한요소해석 및 최적화 과정은 상용 프로그램인 COMSOL과 Matlab 프로그램을 이용하여 수행되었다.

실리콘 기판 표면 형상에 따른 반사특성 및 광 전류 개선 효과 (Effect of Surface Microstructure of Silicon Substrate on the Reflectance and Short-Circuit Current)

  • 연창봉;이유정;임정욱;윤선진
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.116-122
    • /
    • 2013
  • For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately $60^{\circ}$. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/$cm^2$. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • 제9권4호
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

Hot mirror를 이용한 고밀도 태양광의 광분리에 관한 기초실험 연구 (An Experimental Study on the Optical Separation of Highly Concentrated Sunlight)

  • 김영민;모용현;신상웅;오승진;천원기
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.56-60
    • /
    • 2014
  • 태양추적 장치에 장착된 집광기를 이용하여 획득한 고밀도의 태양광에너지는 적외선 범위 및 가시광선 범위의 두 파장 영역으로 분리할 수 있다. 적외선 범위의 파장은 열음향 시스템으로 활용할 수 있으며, 가시광선 범위의 파장은 조명시스템을 통하여 실내 태양광 조명에 활용할 수 있다. 즉, 집광된 태양광은 2차 반사경을 통해 광분리 장치로 입사되며, 입사된 태양광은 Hot mirror를 통하여 가시광선 영역과 적외선 영역으로 분리된다. 본 연구에서는 자연 태양광 및 실내의 인공광원을 대상으로 분리 실험을 하였다. 실내 광원 발생장치 실험에서 분리된 인공광원이 가시광선 영역의 파장은 400m부터 720m 범위이며, 적외선 영역의 파장은 620m부터 940m 범위이다. 또한, 태양추적 장치의 집광된 태양광을 통한 실험에서 가시광선 영역의 파장은 460m부터 680m 범위를 보이며, 적외선 영역의 파장은 620m부터 940m 범위인 것을 확인하였다.

플렉서블 실리콘 박막 태양전지용 ZnO:Al/Ag 후면반사막의 표면형상에 따른 광산란 특성 변화 (Effect of Surface Morphology in ZnO:Al/Ag Back Reflectors for Flexible Silicon Thin Film Solar Cells on Light Scattering Properties)

  • 백상훈;이정철;박상현;송진수;윤경훈;왕진석;이희덕;조준식
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.501-507
    • /
    • 2010
  • Changes in surface morphology and roughness of dc sputtered ZnO:Al/Ag back reflectors by varying the deposition temperature and their influence on the performance of flexible silicon thin film solar cells were systematically investigated. By increasing the deposition temperature from $25^{\circ}C$ to $500^{\circ}C$, the grain size of Ag thin films increased from 100 nm to 1000 nm and the grain size distribution became irregular, which resulted in an increment of surface roughness from 6.6 nm to 46.6 nm. Even after the 100 nm thick ZnO:Al film deposition, the surface morphology and roughness of the ZnO:Al/Ag double structured back reflectors were the same as those of the Ag layers, meaning that the ZnO:Al films were deposited conformally on the Ag films without unnecessary changes in the surfacefeatures. The diffused reflectance of the back reflectors improved significantly with the increasing grain size and surface roughness of the Ag films, and in particular, an enhanced diffused reflectance in the long wavelength over 800 nm was observed in the Ag back reflectors deposited at $500^{\circ}C$, which had an irregular grain size distribution of 200-1000 nm and large surface roughness. The improved light scattering properties on the rough ZnO:Al/Ag back reflector surfaces led to an increase of light trapping in the solar cells, and this resulted in a noticeable improvement in the $J_{sc}$ values from 9.94 mA/$cm^2$ for the flat Ag back reflector at $25^{\circ}C$ to 13.36 mA/$cm^2$ for the rough one at $500^{\circ}C$. A conversion efficiency of 7.60% ($V_{oc}$ = 0.93, $J_{sc}$ = 13.36 mA/$cm^2$, FF = 61%) was achieved in the flexible silicon thin film solar cells at this moment.

결정질 실리콘 태양전지의 스크린 프린팅 공정 최적화 연구 (Optimization of Screen Printing Process in Crystalline Silicon Solar Cell Fabrication)

  • 백태현;홍지화;최성진;임기조;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2011
  • In this paper, we studied the optimization of the screen pringting method for crystalline silicon solar cell fabrication. The 156 * 156 mm2 p-type silicon wafers with $200{\mu}m$ thickness and $0.5-3{\Omega}cm$ resistivity were used after texturing, doping, and passivation. Screen printing method is a common way to make the c-Si solar cell with low-cost and high-efficiency. We studied the optimized condition for screen printing with crystalline silicon solar cell as changing the printing direction (finger line or bus bar), finger width, and mesh angle. As a result, the screen printing with finger line direction showed higher finger height and better conversion efficiency, compared with one with bus bar direction. The experiments with various finger widths and mesh angles were also carried out. The characteristics of solar cells was obtained by measuring light current-voltage, optical microscope and electroluminescence.

  • PDF

광(光) CVD 법(法)에 의한 a-Si 태양전지(太陽電池)의 고효율화에 관한 연구(硏究) (The High Efficiency of Amorphous-Si Solar Cells Prepared by Photo-CVD System)

  • 김태성
    • 태양에너지
    • /
    • 제5권2호
    • /
    • pp.46-53
    • /
    • 1985
  • Hydrogenated amorphous silicon solar cells which are fabricated by photo-chemical vapor deposition (photo-CVD) system has been investigated. In the photo-CVD system which consists of three separate reaction chambers, low-pressure mercury lamp has been used as a light source. The main reactant ($Si_2H_6/He$) gases which are premixed with a small amount of mercury vapor in a mercury-vaporizer kept at $50^{\circ}C$ have been used. Using $C_2H_2$ and $SiH_2(CH_3)_2$ as the carbon source, p-type wide band gap a-SiC:H films have been obtained. The result has been found that the undoped layers of the pin/substrate solar cells are influenced by the residual impurities, such as phosphorus and boron during the deposition process. By minimizing the effect of the impurities in the i-layer and optimizing conditions at the p-layer and p/i interface, the energy conversion efficiency of 9.61 % under AM-1 ($100mW/Cm^2$) has been achieved for pin/substrate solar cells illuminated through their p-layers, using the three separate reaction chamber apparatus. It is expected that a-SiC:H solar cells with the energy conversion efficiency over 10% have been fabricated by Photo-CVD method.

  • PDF

CPU 없는 자가 동력 태양광 트랙커 시스템 (Self-Powered Solar Tracker System without CPU)

  • 이재진;최우진;김석민;박준영;이교범
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.211-218
    • /
    • 2017
  • 본 논문에서는 CPU가 없는 자가동력 태양광 트랙커 시스템을 제안한다. 기존의 태양광 트랙커 시스템은 CPU를 사용하기 때문에 비용과 내구성의 문제가 발생한다. 또한, 기존의 태양광 트랙커 시스템은 설치 장소 및 환경의 영향을 받기 때문에 높은 발전효율을 기대하기 힘들다. 제안하는 태양광 트랙커 시스템은 광 추적센서와 모터의 연동회로를 이용하여 최대의 태양광을 추적하기 때문에 고효율 운전이 가능하고 아날로그 소자들로만 구성되어 있기 때문에 수동소자만큼의 시스템 수명이 보장된다. 또한, CPU를 사용하지 않기 때문에 프로그램 오류로 인한 오작동이 없으며, 설치 이후 유지 및 보수가 간단하다. 제안하는 태양광 트랙커 시스템의 타당성은 1년 동안의 실증 실험 결과를 통해 검증하였다.