• Title/Summary/Keyword: Solar irradiation

Search Result 296, Processing Time 0.025 seconds

Application of electron beam irradiation for studying the degradation of dye sensitized solar cells (전자선 조사를 통한 염료감응형 태양전지의 분해 연구)

  • Akhtar, M.Shaheer;Lee, Hyun-Cheol;Min, Chun-Ji;Khan, M.A.;Kim, Ki-Ju;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.179-182
    • /
    • 2006
  • The effect of electron beam irradiation on dye sensitized solar cell (DSSC) has been studied to examine degradation of DSSC. The high-energy electron beam irradiation affects on the materials and performance of dye sensitized solar cells. We have checked the effects of electron beam irradiation of $TiO_2$ substrate with and without dye adsorption on the photovoltaic performances of resulting DSSCS and also studied the structural and electrical properties of polymers after irradiation. All solar cells materials were irradiated by electron beams with an energy source of 2MeV at different dose rates of 60 kGy, 120 kGy 240 kGy and 900 kGy and then their photoelectrical parameters were measured at 1 sun $(100 mW/cm^2)$. It was shown that the efficiency of DSSC was decreased as increasing the dose of e-beam irradiation due to lowering in $TiO_2$ crystallinity, decomposition of dye and oxidation of FTO glasses. On the other hand, the performance of solid-state DSSC with polyethylene oxide based electrolyte was improved after irradiation of e-beam due to enhancement of its conductivity and breakage of crosslinking.

  • PDF

I-V Characteristics According to the Irradiation (일사량에 따른 전압-전류 특성)

  • Hwang, Jun-Won;Jeong, Jong-Chul;Kim, Seok-Gon;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2103_2104
    • /
    • 2009
  • Solar, as an ideal renewable energy, has inexhaustible, clean and safe characteristics. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current vary with the irradiation, it is necessary to study the characteristics of photovoltaic I-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V according to the irradiation. The results show that the DC current of the photovoltaic system are increased along with the increasing values of irradiation.

  • PDF

Analysis of Power Pattern According to Irradiation for Photovoltaic Generation System (태양광발전 시스템의 일사량에 따른 전력 패턴 분석)

  • Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.602-608
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. As I-V characteristics according to a temperature range of 10~50[$^{\circ}C$], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature. As output power characteristics according to a temperature range of 10~50[$^{\circ}C$], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power. As I-V characteristics according to a irradiation range of 100~900 [$W/m^2$], voltage and current were increased with an increase in irradiation. The result is thought of as an increase in output power with increasing irradiation. As output power characteristics according to a irradiation range of 100~900 [$W/m^2$], output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

I-V Characteristics According to Irradiation for Photovoltaic Systems (태양광 시스템의 일사량에 따른 전압-전류 특성)

  • Lee, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.177-179
    • /
    • 2009
  • Solar, as an ideal renewable energy, it has inexhaustible, clean and safe characteristics. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current varies with the irradiation, it is necessary to study the characteristics of photovoltaic I-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V according to the irradiation.

  • PDF

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

Amorphization of Silicon by 250 keV Electron Irradiation and Hydrogen Annealing

  • Jo Jung-Yol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.23-27
    • /
    • 2005
  • We observed that optical properties of silicon changed under high dose electron irradiation at 250 keV. Our experimental results revealed that the optical transmission through a silicon wafer is significantly increased by electron irradiation. Transmission increase by the change in the absorption coefficient is explained through an analogy with amorphous silicon. Moreover, solar cell open-circuit voltages indicated that defects were generated by electron irradiation, and that the defects responded to annealing. Our results demonstrated that the optical properties of silicon can be controlled by a combination of electron irradiation and hydrogen annealing.

Global Hourly Solar Irradiation Estimation using Cloud Cover and Sunshine Duration in South Korea (운량 및 일조시간을 이용한 우리나라의 시간당 전일사량의 평가)

  • Lee, Kwan-Ho
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design. For the six locations (Seoul, Incheon, Daejeon, Deagu, Gwangju and Busan) in South Korea where the global hourly solar irradiation (GHSI) is currently measured, GHSI was calculated using a comparatively simple cloud cover radiation model (CRM) and sunshine fraction radiation model (SFRM). The result was that the measured and calculated values of GHSI were similar for the six regions. Results of cloud cover and sunshine fraction models have been compared with the measured data using the coefficient of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). The strength of correlation R2 varied within similar ranges: 0.886-0.914 for CRM and 0.908-0.934 for SFRM. Average MBE for the CRM and SFRM were 6.67 and 14.02 W/m2, respectively, and average RMSE 104.36 and 92.15 W/m2. This showed that SFRM was slightly accurate and used many regions as compared to CRM for prediction of GHSI.

P-V Characteristics According to the Irradiation (일사량에 따른 전압-전력 특성)

  • Park, Chul-Woong;Shin, Hyun-Mahn;Cho, Jae-Chul;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2154_2155
    • /
    • 2009
  • Development of renewable energy is promoted to achieve sustainability. So researchers are seeking and developing a new, clean, safe and renewable energy. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC power vary with the irradiation, it is necessary to study the characteristics of P-V according to the external factors. This paper presents the analysis of characteristics of P-V according to the irradiation. The results show that the DC power of the photovoltaic system are increased along with the increasing values of irradiation.

  • PDF

Technology Trends and Future Prospects of Satellite-Based Photovoltaic Electricity Potential (위성기반 태양광 발전가능량 산출기술 개발 동향 및 향후 전망)

  • Han, Kyung-Soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.579-587
    • /
    • 2016
  • To obtain a stable energy supply and manage PhotoVoltaic (PV) systems efficiently, satellite imagery methods are being developed to estimate the solar PV potential. This study analyzed trends in the use of satellite imagery in solar PV and solar irradiation estimation technology. The imaging technology is used to produce solar energy resource maps. The trend analysis showed that the level of solar PV technology in Korea is 30% below that of advanced countries. It is impossible to raise such low-level technologies to the levels of advanced countries quickly. Intensive research and development is the only way to achieve the 80% technology level of advanced countries. The information produced in this process can contribute to the management of solar power plants. A valid technology development strategy would be to obtain effective data that can be used for fieldwork. Such data can be produced by estimating solar irradiation very accurately with several-hundred-meter resolution using Communication, Ocean, and Meteorological Satellites (COMS) and next-generation GEO-KOMPSAT 2A, developing core technologies for short- and medium-term irradiation prediction, and developing technologies for estimating the solar PV potential.

Analytical Study on Relationships and Characteristics of Global Solar Irradiance and Meteorological Data measured in Daegu during 1985 to 2014 (1985년부터 2014년까지 대구의 측정 수평면전일사량과 기상 데이터의 경향 및 상관관계 분석 연구)

  • Cho, Min-Cheol;Lim, Haeun;Kwak, Jae-eun;Kang, Jun-Mo;Hwang, Dong-Hyun;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2017
  • At present, the Korea Meteorological Administration (KMA) measures the horizontal solar irradiation and meteorological data with time in 33 areas. Among these measured data, this study analyzed the tendency of applying the new analysis method by using the horizontal solar irradiation and meteorological data with the time which was measured in many regions across the country for thirty years from 1985 to 2014. The method applied to the analysis is to compare the value of the annual total horizontal solar irradiance and meteorological data for one year with the value of those for the previous year of each year, and give +1 when it is higher, and -1 when it is lower. The characteristics and relationships the horizontal solar irradiation and meteorological data in Daegu were evaluated and analyzed. Through the analysis results, the analysis method applied in this study could be well describe the characteristics and relationships of the solar irradiance and meteorological data during some years.