• 제목/요약/키워드: Solar hydrogen

검색결과 290건 처리시간 0.033초

수소생산을 위한 태양열 이용 메탄 분해 반응기 개발 (Development of Methane Decomposition Reactor for Hydrogen Production Using Solar Thermal Energy)

  • 김하늘;김종규
    • 신재생에너지
    • /
    • 제17권2호
    • /
    • pp.40-49
    • /
    • 2021
  • This paper explains the development process of methane decomposition to hydrogen and carbon black using solar thermal energy. It also demonstrates the advantages and disadvantages of five different reactors for each development stage, including the reactor's experimental results. Starting with the initial direct heating type reactor, the indirect heating type reactor was developed through five modifications. The 40-kWth solar furnace installed at the Korea Institute of Energy Research was used for the experiment. In the experiment using the developed indirect heating reactor, an 89.0% methane to hydrogen conversion rate was achieved at a methane flow rate of 40 L/min, obtained at about twice the flow rate compared to previous advanced studies.

Ionization of Hydrogen in the Solar Atmosphere

  • Chae, Jongchul
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권2호
    • /
    • pp.83-92
    • /
    • 2021
  • The ionization degree of hydrogen is crucial in the physics of the plasma in the solar chromosphere. It specifically limits the range of plasma temperatures that can be determined from the Hα line. Given that the chromosphere greatly deviates from the local thermodynamic equilibrium (LTE) condition, precise determinations of hydrogen ionization require the solving of the full set of non-LTE radiative transfer equations throughout the atmosphere, which is usually a formidable task. In many cases, it is still necessary to obtain a quick estimate of hydrogen ionization without having to solve for the non-LTE radiative transfer. Here, we present a simple method to meet this need. We adopt the assumption that the photoionizing radiation field changes little over time, even if physical conditions change locally. With this assumption, the photoionization rate can be obtained from a published atmosphere model and can be used to determine the degree of hydrogen ionization when the temperature and electron density are specified. The application of our method indicates that in the chromospheric environment, plasma features contain more than 10% neutral hydrogen at temperatures lower than 17,000 K but less than 1% neutral hydrogen at temperatures higher than 23,000 K, implying that the hydrogen temperature determined from the Hα line is physically plausible if it is lower than 20,000 K, but may not be real, if it is higher than 25,000 K. We conclude that our method can be readily exploited to obtain a quick estimate of hydrogen ionization in plasma features in the solar chromosphere.

초고온 태양열을 이용한 태양연료 생산기술 연구동향 (Review on the Solar Fuel Production Technology Using High-Temperature Solar Furnace)

  • 강용혁;김진수;이상남;윤환기;유창균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.408-411
    • /
    • 2005
  • Solar fuel production technology using high-temperature solar furnace was briefly reviewed in this paper. 'Hydrogen' which is known to be the most promising energy carrier in the near future is to be generated environment-friendly from non-carbon resources. Combination of solar furnace operated by concentrated solar energy and high-temperature thermal reactions could be one of the most efficient ways to fulfill this need eventually. Various reaction mechanisms are feasible within a wide spectrum of solar fuel production technology, but intensive research efforts in related key areas need to be taken for successful development and commercialization of the technology.

  • PDF

인공태양을 이용한 모노리스 적용 반응기에서 2단계 열화학적 물분해 연구 (2-Step Thermochemical Water Splitting on a Active Material Washcoated Monolith Using a Solar Simulator as Heat Source)

  • 강경수;김창희;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.109-115
    • /
    • 2007
  • Solar energy conversion to hydrogen was carried out via a two-step thermochemical water splitting using metal oxide redox pair. To simulate the solar radiation, a 7 kW short arc Xe-lamp was used. Partially reduced iron oxide and cerium oxide have the water splitting ability, respectively. So, $Fe_3O_4$ supported on $CeO_2$ was selected as the active material. $Fe_3O_4/CeO_2$(20 wt/80 wt%) was prepared by impregnation method, then the active material was washcoated on the ceramic honeycomb monolith made of mullite and cordierite. Oxygen was released at the reduction step($1673{\sim}1823\;K$) and hydrogen was produced from water at lower temperature($873{\sim}1273\;K$). The result demonstrate the possibility of the 2-step thermochemical water splitting hydrogen production by the active material washcoated monolith. And hydrogen and oxygen was produced separately without any separation process in a monolith installed reactor. But the SEM and EDX analysis results revealed that the support used in this experiment is not suitable due to the thermal instability and coating material migration.

고효율 실리콘 박막태양전지를 위한 신규 수소저감형 비정질실리콘 산화막 버퍼층 개발 (A Novel Hydrogen-reduced P-type Amorphous Silicon Oxide Buffer Layer for Highly Efficient Amorphous Silicon Thin Film Solar Cells)

  • 강동원
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1702-1705
    • /
    • 2016
  • We propose a novel hydrogen-reduced p-type amorphous silicon oxide buffer layer between $TiO_2$ antireflection layer and p-type silicon window layer of silicon thin film solar cells. This new buffer layer can protect underlying the $TiO_2$ by suppressing hydrogen plasma, which could be made by excluding $H_2$ gas introduction during plasma deposition. Amorphous silicon oxide thin film solar cells with employing the new buffer layer exhibited better conversion efficiency (8.10 %) compared with the standard cell (7.88 %) without the buffer layer. This new buffer layer can be processed in the same p-chamber with in-situ mode before depositing main p-type amorphous silicon oxide window layer. Comparing with state-of-the-art buffer layer of AZO/p-nc-SiOx:H, our new buffer layer can be processed with cost-effective, much simple process based on similar device performances.

Photo or Solar Ferrioxalate Disinfection Technology without External Hydrogen Peroxide Supply

  • Cho, Min;Jeong, Joon-Seon;Kim, Jae-Eun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.238-243
    • /
    • 2007
  • The Fenton reaction, which refers to the reaction between ferrous ions and hydrogen peroxide to produce the OH radical, has not been widely applied to the disinfection of microorganisms despite being economic and environmentally friendly. Cho et al. have previously proposed the neutral photo ferrioxalate system as a solution to the problems posed by the Fenton reaction in acidic conditions, but this system still requires an external hydrogen peroxide supply. In the present study, we developed a simple disinfection technology using the photo or solar ferrioxalate reaction without the need for an external hydrogen peroxide supply. E. coli was employed as the indicating microorganism. The study results demonstrated the effectiveness of the photo ferrioxalate system in inactivating E. coli without any external hydrogen peroxide supply, as long as dissolved oxygen is supplied. Furthermore, the solar ferrioxalate system achieved faster inactivation of E. coli than an artificial light source at similar irradiance.

접시형 태양열 집광 시스템과 산화세륨 및 페라이트산화물을 이용한 열화학 사이클의 수소생산 (TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM and $CeO_2/NiFe_2O_4$)

  • 권해성;오상준;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.113-119
    • /
    • 2012
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction) and W-D (Water Decomposition) steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $CeO_2$ powder, was successfully achieved hydrogen production under field conditions. Through this experiment, we can analyze the characteristics of the catalyst and able to determine which is more advantageous thing to produce hydrogen compared with previous experiment that used ferrite-device.

  • PDF

Influence of top AZO electrode deposited in hydrogen ambient on the efficiency of Si based solar cell

  • Chen, Hao;Jeong, Yun-Hwan;Chol, Dai-Seub;Park, Choon-Bae
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.321-322
    • /
    • 2009
  • Al doped ZnO films deposited on glass substrate using RF magnetron sputtering in Ar and $Ar+H_2$ gas ambient at $100^{\circ}C$. The films deposited in $Ar+H_2$ were hydrogen-annealed at the temperature of $150\sim300^{\circ}C$ for 1hr. The lowest resistivity of $4.25\times10^{-4}{\Omega}cm$ was obtained for the AZO film deposited in $Ar+H_2$ after hydrogen annealing at $300^{\circ}C$ for 1hr. The average transmittance is above 85% in the range of 400-1000 nm for all films. The absorption efficiency of solar cell was improved by using the optimized AZO films as a top electrode.

  • PDF

UMG 실리콘 태양전지의 패시베이션 공정 연구 (Optimization of Passivation Process in Upgraded Metallurgical Grade (UMG)-Silicon Solar Cells)

  • 장효식;김유진;김진호;황광택;최균;안종형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.438-438
    • /
    • 2009
  • We have investigated the effect of forming gas annealing for Upgraded Metallurgical Grade (UMG)-silicon solar cell in order to obtain low-cost high-efficiency cell using post deposition anneal at a relatively low temperature. We have observed that high concentration hydrogenation effectively passivated the defects and improved the minority carrier lifetime, series resistance and conversion efficiency. It can be attributed to significantly improved hydrogen-passivation in high concentration hydrogen process. This improvement can be explained by the enhanced passivation of silicon solar cell with antireflection layer due to hydrogen re-incorporation. The results of this experiment represent a promising guideline for improving the high-efficiency solar cells by introducing an easy and low cost process of post hydrogenation in optimized condition.

  • PDF