• Title/Summary/Keyword: Solar heating System

Search Result 492, Processing Time 0.02 seconds

Comparison of Heat Collection Performance of Water Heating System Using Fixed and Azimuth-Tracking Solar Collectors (고정식과 방위추적식 태양열 급탕시스템의 집열성능 비교)

  • Lee, Jong Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.191-196
    • /
    • 2014
  • The solar water heating system is one of the seven green campus items installed at the Gangneung campus of Gangneung-Wonju National University. The solar water heating system has two types of solar collectors, four storage tanks and monitoring equipment. Fixed and azimuth-tracking solar collectors were installed to collect heat from the sun. The amount of heat collected by the two different types of solar collectors was calculated from the temperature of the monitored storage tanks. Our results showed that the amount of solar heat collected by the azimuth-tracking solar collector was 19% greater on a sunny day and 23% greater on a rainy day than that collected by the fixed solar collector; therefore, the azimuth-tracking solar collectors are, on an average, 21% more efficient than the fixed solar collectors.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiCl-$CaCl_2-Zn(NO_3)_2$ Solution at Solar Evaporator Heating (LiCl-$CaCl_2-Zn(NO_3)_2$ 수용액을 사용하는 흡수 2중효용 시스템에서 태양열을 증발기 열원으로 사용하는 난방기의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • In this paper, with water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture which utilizes solar energy at the evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture than for the water-LiBr pair, and FR is lower for the former.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Economic Analysis of Cooling-Heating System Using Ground Source Heat in Horticultural Greenhouse (시설원예의 지열냉·난방시스템 경제성 분석)

  • Ryoo, Yeon-Su;Joo, Hye-Jin;Kim, Jin-Wook;Park, Mi-Lan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.60-67
    • /
    • 2012
  • Government Geothermal Cooling-Heating Projects has made efforts to reduce GHG(Greenhouse Gas) emissions and to manage cost of greenhouse farm households. This study evaluated the economic benefits of heating load rate of change by comparing Geothermal Cooling-Heating System with the existing system(greenhouse diesel heating) in the Government Geothermal Cooling-Heating Projects. Economic analysis results shows that, 1) When installing the Cooling-Heating system according to the ratio of 70% heating load in policy standards, the geothermal cooling-heating system has economic efficiency with greenhouse type or scale independent because the investment cost is recovered within 7 years. And It was more economic efficiency the ratio of 50% heating load than70% heating load. 2) When installing the Cooling-Heating system according to the glass greenhouse of the ratio of 90% heating load, pay period of investment cost is recovered within 5 years. Therefore it is necessary to apply flexible heating sharing according to greenhouse type or scale.

A Study of Bubble Pump that is applied Solar Heating Water System (태양열 온수 시스템에 적용한 기포펌프의 동작특성에 관한 연구)

  • Park, G.T.;Song, L.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • Regarding the need of energy in advance and the depletion of fossil fuel energy, all researches around the world now are trying to extract energy from many alternative sources especially the renewable one. Solar, ocean tidal, wind and geothermal energy are renewable energy fields which many researches are focused on. This paper explains about effort to replace electric pump used in solar water heating system by bubble pump. The utilization of bubble pump in this system is very efficient since it needs heat energy for its operation that can be obtained easily. In addition, it can also simplify the construction of the system. Bubble pump also functions as a controller to circulate water inside the system. Before the installation of bubble pump, the special quality and performance of bubble pump should be analyzed. The result got from the analysis could show the fluctuation of water flow rate occurred because it sensitively reacts to the heat quantity. Here the heat quantity is taken from the solar that, as we know, is not stable in a whole day. Problems often occurred are the flow rate in this system is very low moreover it could be stop if the pressure exceeds the limit.

  • PDF

Verification Experiment and Analysis for 6 kW Solar Water Heating System(Part 2 : Modelling and Simulation) (6 kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제2보 모델링 및 시뮬레이션))

  • 최봉수;김진홍;강용태;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.556-565
    • /
    • 2004
  • We have experimented an actual solar water heating system acquiring real data for one year period. On the basis of the operation data, it is necessary to predict the system performance such as collector efficiency and solar fraction, and to analyze the economical efficiency for system optimal design. To estimate the performance of actual systems through simulation, valid modelling for components consisting of the system should be accompanied. The present study is focused on the modelling for load patterns and operating control conditions. We proposed two load models: concentration model which gathers real loads as a meaningful group and distribution model which disperses real loads with time. If grouping of the load distribution is suitable, the predicted values by the concentration model approaches to those by the distribution model close to actual load pattern apparently. As a result, both of them are in good agreement with those by experiment.

Analysis of Thermodynamic Design Data for Heating of Double - Effect Solar Absorption System using LiBr - water and Ethylene Glycol Mixture (에틸렌글리콜 혼합액을 사용하고, 태양열을 보조열원으로 하는 이중효용 흡수식 시스템의 난방 특성해석)

  • Won, S.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • Analysis of thermodynamic design data of double effect solar absorption heat pump system for heating has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data. enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture (H2O: CHO ratio 10:1 by mole) by computer simulation. The obtained results, COP and mass flow ratio of the water-lithium bromide-ethylene glycol system, are compared with data for the water-Libr pair solution.

A Study on the Application Solar Heating System of Village Hall (마을회관의 태양열 시스템적용에 관한 연구 -경상북도 영양군 입암면을 중심으로-)

  • Yoo, In-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • This study is for getting basic data through grasping the obtained heat by structure of each unit and the effects of environment improvement based on judgement for whether or not a solar heating system of renewable energy installations is possible to set up in village hall public buildings as community center and senior citizen center. Conducting a survey of community center and senior citizen center in Ibam-Myon, Yeongyang-Gun, Gyeongsangbuk-Do and the analysis, obtained solar heat of 414,309,678 kcal every year and from this, effects of 131.48995 $TCO_2$. These figure equate to 26,298 pines effect. These results show that the advantage of reducing building operating costs in the long run besides effects of environment improvement.

  • PDF

Analysis of Thermal Performance of Solar Hot-Water and Heating System with Baffle Storage Tank (태양열이용 Baffle식 축열조를 갖는 급탕난방시스템의 열성능 해석)

  • Suh, Jeong-Se;Yi, Chung-Seub;Yoon, Ji-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.805-811
    • /
    • 2010
  • A numerical study has been performed to investigate the thermal performance of solar heating system with baffle type of storage tank by using the commercial code TRNSYS. As a result, the solar fraction depends strongly on the efficiency and heat loss coefficient of solar collector as well as the heating capacity of house and the water temperature supplied to the shower. In addition, the solar fraction has been basically ranked to higher level in baffle type of storage tank than typical type of single storage tank for the range of operation condition.

A Study on the Optimal Water Flow Rate of the Solar Heating System (태양열 난방시스템의 최적 유량에 관한 연구)

  • Seong, Kwan-Jae;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.1
    • /
    • pp.2-11
    • /
    • 1983
  • The solar energy retention rate of a flat plate collector can be increased by increasing water flow rate through the collector which also increases the pumping energy incurred in obtaining that solar energy. The problem of optimal flow rate is formulated to fit within the framework of pontryagin's maximum principle and with a few simplifying assumptions, an optimal solution that can be easily implemented is obtaincd, The optimal solution is used in the simulation of a solar heating system using actual climatological data and the results are compared with that of on-off control. The result that not only the object function but, In some cases, also the solar energy retention rate the collector is increased. In is also found that the optimal control gets more advantageous as the solar insolation level gets lower, and also as tile cost of auxiliary heating fuel gets higher.

  • PDF