• Title/Summary/Keyword: Solar energy harvesting

Search Result 131, Processing Time 0.029 seconds

Development of a Tree-shaped Wind Power System Using Piezo-electric Materials (압전 재료를 이용한 나무형 풍력 발전 시스템 개발)

  • Oh, Seung-Jin;Han, Hyun-Joo;Han, Soo-Bin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.53-59
    • /
    • 2008
  • This paper reports an experimental investigation to design a tree-shaped wind power system using piezo-electric materials. The proposed system is to produce power if wind is strong enough to produce any bending motions in the energy converting elements, i.e., piezo-electric materials. Two different kinds of piezoelectric materials are used in the present study to produce power by scavenging energy from the wind. The soft flexible one made the leaf element while the hard one was applied to the trunk portion of the tree requiring rather strong winds to generate any power. Although small, each leaf deems to play the role of a power producer and currents are continuously trickling down to the storage battery installed at the bottom of the system.

Investigation on the Effect of Abnormal Climate in High Value Added Crops Utilizing Agrophotovoltaic Structures (영농형 태양광 구조물 활용 고부가가치 작물의 이상기후 영향 분석)

  • Kim, Wooram;Nam, JaeWoo;Gim, Geun Ho;Kim, Deok Sung;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • Agrovoltaic system is a concept that combines agriculture and photovoltaic (PV) system by applying a PV system to the upper part of farmland. In this study, we developed a folding drive system for an agrophotovoltaic (agroPV) module (150 Wp/4×9 cell) exclusively for pear farming with 10 kW capacity. The system was installed in 2018, and the growth characteristics and quantity of pears under the agroPV folding system have been investigated for 2 years. We found that thare is no differences of the characteristics of pears grown under the agroPV system compared to the pears grown without the system (control) except the percutaneous color L of pear. However, the weight and sugar content of the pear grown under the agroPV system were decreased by 4.5% and 1.3°Bx compared to that of the control, respectively. We assume that this is mainly due to the influenced of the delay in flowering as upper PV module block some of sunlight. However, interestingly, when we deleyed the pear harvesting by 2 weeks, the weight of pears increased by 8.5% and they became nearly the sample as the control pears harvested 2 week earlier. In addition, we also found that the agroPV modules decrease the fall rate of pear when the typoon struck, also it mitigates cold damage by 38% during April by protecting from frost. In conclusion, it can be said that the agroPV system help to protect target crops from the environmental conditions and the quality of the crops are similar to the that of control.

A Development of P-EH(Practical Energy Harvester) Platform for Non-Linear Energy Harvesting Environment in Wearable Device (비연속적 에너지 발전 환경을 고려한 웨어러블 기반 P-EH 플랫폼 개발)

  • Park, Hyun-Moon;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1093-1100
    • /
    • 2018
  • Fast progress in miniaturization and reducing power consumption of semiconductors for wearable devices makes it possible to develop extremely small wearable systems for various application services. This results recent wearable applications to be powered from extremely low-power energy harvesters based on solar, piezo, and TENG sources. In most cases, the harvesters generate power in non-linear manner. Therefore, we implemented and experimented the device platforms to utilize natural frequency of around 3Hz. We also designed two-stage power storages and high efficiency conversion platform to consider such non-linear power harvesting sources. The experiment showed power generation of about 4.67mW/min from these non-linear sources with provision of stable energy storages.

Development of a Hybrid Power Generation System Using Photovoltaic Cells and Piezoelectric Materials (태양 전지와 압전 재료를 이용한 하이브리드 발전시스템 개발)

  • Kim, Yeongmin;Ahmed, Rahate;Zeeshan, Zeeshan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper deals with the operation of a hybrid power generation system made with photovoltaic cells and piezoelectric materials. The system can produce power from the wind as well as from the sun subject to their availability. Irrespective of the largeness of their power production, the power developed by both generators (i.e., phtovoltaic cells and piezoelectric cells) were combined and stored before it was applied to a load. Especially, the AC power (current) developed from each piezoelectric generator was converted by a full wave bridge rectifier and then combined prior to its storage in a capacitor. It was observed that the system can produce a maximum output power of 6.49 mW at loading resistance of $100{\Omega}$.

Synthesis, Characterization and Determination of HOMO-LUMO of the Substituted 1,3,5-Triazine Molecule for the Applications of Organic Electronics

  • Pakkath, Rajeesh;Reddy, Eeda Koti;Kuriakose, Sheena;Saritha, C;Sajith, Ayyiliath M;Karuvalam, Ranjith Pakkath;Haridas, Karickal Raman
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.352-359
    • /
    • 2019
  • The most important parameter of organic molecules for energy harvesting application focuses mainly on their band gap (HOMO-LUMO). In this report, we synthesized differently substituted 1,3,5-triazine based organic molecule which on future processing can be used in organic electronics like solar cells and OLED's. The energy gap of the synthesized novel analogue was calculated using cyclic voltammetry, UV-Visible spectroscopy and compared with density functional theory (DFT) studies.

The Design and Experiment of Piezoelectric Energy-Harvesting Device Imitating Seaweed (해조류를 모방한 압전 에너지 수확 장치의 설계와 실험)

  • Kang, Tae-Hun;Na, Yeong-Min;Lee, Hyun-Seok;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • Electricity generation using fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy sources (solar, wind power, geothermal heat, etc.) to replace fossil fuels is ongoing. These devices are able to generate power consistently. However, they have many weaknesses, such as high installation costs and limits to possible setup environments. Therefore, an active study on piezoelectric harvesting technology that is able to surmount the limitations of existing energy technologies is underway. Piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages, such as a wider installation base and lower technological costs. In this study, a piezoelectric harvesting device imitating seaweed, which has a consistent motion caused by fluid, is used. Thus, it can regenerate electricity at sea or on a bridge pillar, which has a constant turbulent flow. The components of the device include circuitry, springs, an electric generator, and balancing and buoyancy elements. Additionally, multiphysics analysis coupled with fluid, structure, and piezoelectric elements is conducted using COMSOL Multiphysics to evaluate performance. Through this program, displacement and electric power were analyzed, and the actual performance was confirmed by the experiment.

Compatibility of Lithium ion Phosphate Battery in Solar off Grid Application

  • Lakshmanan, Sathishkumar;Vetrivel, Dhanapal;Subban, Ravi;R., Saratha;Nanjan, Sugumaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.472-478
    • /
    • 2022
  • Solar energy harvesting is practiced by various nations for the purpose of energy security and environment preservation in order to reduce overdependence on oil. Converting solar energy into electrical energy through Photovoltaic (PV) module can take place either in on-grid or off-grid applications. In recent time Lithium battery is exhibiting its presence in on-grid applications but its role in off-grid application is rarely discussed in the literature. The preliminary capacity and Peukert's study indicated that the battery quality is good and can be subjected for life cycle test. The capacity of the battery was 10.82 Ah at 1 A discharge current and the slope of 1.0117 in the Peukert's study indicated the reaction is very fast and independent on rate of discharge. In this study Lithium Iron Phosphate battery (LFP) after initial characterization was subjected to life cycle test which is specific to solar off-grid application as defined in IEC standard. The battery has delivered just 6 endurance units at room temperature before its capacity reached 75% of rated value. The low life of LFP battery in off-grid application is discussed based on State of Charge (SOC) operating window. The battery was operated both in high and low SOC's in off-grid application and both are detrimental to life of lithium battery. High SOC operation resulted in cell-to-cell variation and low SOC operation resulted in lithium plating on negative electrode. It is suggested that to make it more suitable for off-grid applications the battery by default has to be overdesigned by nearly 40% of its rated capacity.

Intelligent Energy Harvesting Power Management and Advanced Energy Storage System (지능형 에너지 저장시스템과 ESS 개발을 위한 소재 및 공정 기술)

  • Heo, Kwan-Jun;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.417-427
    • /
    • 2014
  • Renewable energy sources such as solar, wind and hydro provides utilizing renewable power and reduce the using fossil fuels. On the other hand, it is too critical to apply power system due to the intermittent nature of renewable energy sources, the continuous fluctuations of the power load, and the storage with high energy density. Energy storage system, including pumped-hydroelectric energy storage, compressed-air energy storage, superconducting magnetic energy storage, and electrochemical devices like batteries, supercapacitors and others have shown that solve some of the challenges. In this paper, we review the current state of applications of energy storage systems, and atomic layer deposition technology, graphene materials on the energy storage systems and processes.

Architecture of the Solar-powered Sensor System for Distributed-storage Wireless Sensor Network (분산 저장형 센서 네트워크를 위한 태양 에너지 기반 센서 시스템의 구조)

  • Noh, Dong-Kun;Yoon, Ik-June
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.843-845
    • /
    • 2011
  • Due to the short lifetime of the battery-based sensor network, study on the environmental energy-harvesting sensor network is being performed widely. In this paper, we analyze the system-level requirements on the sensor node which is needed for the efficient solar-powered wireless sensor network for the target application. In addition, we explain how the HW/SW components of our real solar-powered sensor node can satisfy the requirements mentioned above.

  • PDF

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.