• Title/Summary/Keyword: Solar cycle

Search Result 380, Processing Time 0.026 seconds

Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model

  • Ju, Jaehyun;Kim, Yeung-Ju;Park, Eui Seong;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from $Gu\acute{e}rande$, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.

A Study on the Performance of Solar Heat, Pump Cycle System for $CH_2F_2$, $CF_3CHF_2$ and $CF_3CH_2F$( I ) ($CH_2F_2-CF_3CH_2F-CF_3CHF_2$계 냉매적용 태양열 열펌프시스템 성능 연구( I ))

  • Lee, Soon-Bok;Jung, Hyun-Chai;Bae, Chun-Woo;Sun, Kyung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.71-79
    • /
    • 2003
  • The goal of this paper is to measure and compare the performance of solar heat pump for refrigerants. To accomplish the goal, solar heat pump with aluminum roll bond type evaporator and indoor heat exchanged(condenser) was built. The test results showed that the COP and heating capacity of HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) were higher than those of HCFC-22$(CHClF_2)$. A study proved that best conditions to use heating system that is about $40m^2$ and $80m^2$. The COP range of the whole system was from 4 to 6 according to the solar collector's area variation. Hydrochlo-rofluorocarbon HCFC-22$(CHClF_2)$ is included in the compound to be controlled. HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) is the most suitable replacement HCFC-22$(CHClF_2)$ in solar heat pump application. The solar heat pump system was designed to show the best efficiency that the room temperature make $18\sim20^{\circ}C$ and $23\sim25^{\circ}C$ in Seoul during the fall season.

Self-Consumption Solar PV Economic Rate Analysis for RE100 Companies in Korea (한국 RE100 기업의 자가소비 태양광 발전 경제적 비율 분석)

  • Jong Yi Lee;Kyung Nam Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.134-143
    • /
    • 2023
  • Efforts are being made to respond to global warming. Interest in and demand for the private sector-led RE100 campaign is also increasing. Self-built solar power generation, one of the implementation tools for RE100, is not expanding. However, it can be an economical means of implementation in the long run. In this study, we intend to analyze the impact on the optimal ratio of self-solar power generation using HOMER simulation. OPR defines the optimal solar power generation ratio and looks into what changes there are in the optimal solar power ratio when self-power consumption increases and external power purchase price changes. As a result, the optimal rate of self-solar power generation has a low impact even if self-power consumption increases. As the external power unit price increases, the optimal ratio increases, and at a power unit price of 100 KRW/kWh, OPR is 24%; at 200 KRW/kWh OPR is 31%; and at 300 KRW/kWh OPR is 34%. This shows that the electricity price replaced during the life cycle has a high impact on the economic feasibility of solar power generation. However, when the external power unit price reached a certain level, the increase in OPR decreased. This shows that it is difficult for domestic companies to achieve RE100 based on the economic feasibility of solar energy alone. Therefore, efforts are needed to supply renewable energy in the public sector.

Algorithm for Judging Anomalies Using Sliding Window to Reproduce the Color Temperature Cycle of Natural Light (자연광의 색온도 주기 재현을 위한 슬라이딩 윈도우 기반 이상치 판정 알고리즘)

  • Jeon, Geon Woo;Oh, Seung Taek;Lim, Jae Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.30-39
    • /
    • 2021
  • Research in the field of health lighting has continued to advance to reproduce the color temperature of natural light which periodically changes. However, most of this research could only reproduce a uniform circadian color temperature of natural light, therefore failing to realize the characteristics of the circadian cycle of color temperature difference by latitude and longitude. To reproduce the color temperature of natural light on which the characteristics of a region are reflected, the collection technology of real-time characteristics of natural light is needed. If the color temperatures which are not within a periodical pattern due to climate changes, etc., are measured, it will be difficult to judge the occurrence (presence) of the anomalies and to reproduce the circadian cycle of the color temperature of natural light. Therefore, this study proposes an algorithm for judging the anomalies in real time based on the sliding window to reproduce the color temperature of natural light. First, the natural light characteristics DB collected through the on-site measurement were analyzed, the differential values at a one-minute interval were calculated and examined, and then representative color temperature circadian patterns by solar terms were drawn. The anomalies were then detected by the application of the sliding window that calculated the deviation of the color temperature for the measured color temperature data set, which was collected through RGB sensors, while moving along the time sequence. In addition, the presence of anomalies was verified through the comparison study between the detection results and the representative circadian cycle of the color temperature by solar term. The judgment method for the anomalies from the measured color temperature of natural light was proposed for the first time, confirming that the proposed method was capable of detecting the anomalies with an average accuracy of 94.6%.

STUDY ON PREDICTION OF THE INDUCED TEMPERATURE IN ENVIRONMENTAL TEST (얇은 평판의 환경시험에서 유도온도 예측에 대한 연구)

  • Lee, J.Y.;Baek, S.H.;Park, S.J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.24-32
    • /
    • 2008
  • Environmental test is divided into operation test and storage test. The temperature of storage test is induced temperature which is considered with all sort of the heat source. Induced temperature is the temperature to be adapted to each item and platform and can be induced by computer simulation, laboratory, and real field test. We considered the induced temperature to be associated with solar heat source. In this research. First, we compared the induced temperature which be occurred by one experiment for thin plate in solar test chamber with the other one which be occurred by computer simulation to be SolidWorks 2007 COSMOS FloWorks. After this verification, we showed induced temperature which can be occurred when the test item is stored. Especially, we bring out the induced temperature by applying the ambient temperatures which is presented by MIL-STD-810F and brought out in preceding research.

Experimental investigation of Geyser boiling in Thermosyphon for Solar Collector (태양열 집열용 써모사이폰의 Geyser boiling에 대한 실험적 연구)

  • Hong, J.K.;Bae, C.H.;Chung, K.T.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1040-1045
    • /
    • 2004
  • This study has been carried out to investigate thermosyphon's geyser boiling phenomenon used to solar collector. evaporator section of thermosyphon used to solar collector is very much longer than that of condenser section. From the results from this study, Geyser boiling's cycle depends on cooling water, tilt angle and the applied heat load at the evaporator. In this study, according to heat load, the geyser boiling frequency is lower, but the amplitude higher. For the high tilt angle of heat pipe, the frequency and amplitude are lower and higher in the evaporator region, respectively. Whereas, these phenomena is in contrast in the condenser region.

  • PDF

The Effect of Sealing Technology on the Long-Term Stability of Dye-Sensitized Solar Cell Module (염료감응 태양전지 모듈의 장기안정성 향상을 위한 실링기술 연구)

  • Lee, Kwangsoo;Ko, Min Jae
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.155-158
    • /
    • 2016
  • Long-term stability of dye-sensitized solar cell (DSSC) module is critical for the commercialization. We investigated the effect of sealing technology on the long-term stability of the $10cm{\times}11cm$ sized DSSC modules. We applied the concept of secondary sealing to the module and then performed several stability tests such as humidity cycle, 1 sun light soaking and outdoor stability tests. The enhanced stability was confirmed for the DSSC module employing optimized sealing materials and architectures.

Design and Analysis of SEPIC Converter Based MPPT for Solar PV Module with CPWM

  • Maglin, J.R.;Ramesh, R.;Vaigundamoorthi, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1269-1276
    • /
    • 2014
  • The main objective of this paper is to design DC-DC MPPT circuit using chaotic pulse width modulation to track maximum power from solar PV module for space application. The direct control method of tracking is used to extract maximum power. The nominal duty cycle of the main switch of DC-DC SEPIC converter is adjusted so that the solar panel output impedance is equal to the input resistance of the SEPIC converter which results better spectral performance in the tracked voltages when compared to conventional PWM control. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.

The Effect of Solar Burst in Communications System for Lunar Exploration (달 탐사 통신 시스템에서 태양 폭발의 영향)

  • Kim, Sanggoo;Hong, Heejin;Oh, Janghoon;Yoon, Dongweon;Hyun, Kwangmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.309-316
    • /
    • 2013
  • Since the solar activity, one of the factors influencing on lunar communication systems, is to reach its maximum occurring at 11-year solar cycle in autumn 2013, the solar burst frequency and strength are expected to increase. The solar burst has an effect on earth magnetosphere and causes malfunction, loss of communication, and breakdown of various types of satellites and probes. These problems give rise to huge economic and physical loss. Therefore, we should analyze the effect of solar burst on lunar communications and minimize the expected loss. In this paper, we perform the analysis of the link model and link performance between a land station and a lunar orbiter under the solar burst for orbiter's survivability and stable communication channel operations.