• 제목/요약/키워드: Solar cell application

검색결과 328건 처리시간 0.028초

태양광어레이 최적화에 의한 단위 부지면적당 발전량 개선 (Improvement of generation capacity per unit site area by the optimization of photovoltaic array)

  • 김의환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.109.2-109.2
    • /
    • 2011
  • A photovoltaic system is getting the spotlight for a environment-friendly energy source. But its location is limited because a lot of land is necessary for photovoltaic arrays. Nevertheless, its dissemination is rapidly increasing more than 40 % every year and exceeded about 400 MW in 2009. The radical growth of a photovoltaic system aggravated a lack of sites, so that forests and farmland were destroyed. It is demanded to make use of a vacant lot or little piece of land for the way to solve the lack of sites and improve the location requirements for a photovoltaic system. General photovoltaic arrays are consist of a single layer structure and needs enough separation distances to maximize the amount of solar radiation and to eliminate influences by the shadow of other arrays. So that a large amount of land is required for the site. The solar cell arrays with long separation distances can not be placed in a small vacant lot and its site application efficiency is low. This study optimized photovoltaic arrays as multilayered structure with movable sleeves for the efficient photovoltaic in a small site. The existing photovoltaic arrays with a single layer structure were fixed or tracking systems. In this experimental equipment, photovoltaic arrays attached to the multilayers have rectilinear movement and rotary motion using sleeves. Therefore, shadow influences were removed and the generation capacity was improved. On the simulation result, generation increased by about 30% in the same site considering shadow influences and so on.

  • PDF

Characteristics of Nano-crystalline TiO2 Dye-sensitized Solar Cells having Counter Electrodes with Different Preparing Process

  • Lee, Dong-Yoon;Koo, Bo-Kun;Kim, Hyun-Ju;Lee, Won-Jae;Song, Jae-Sung;Kim, Hee-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.238-242
    • /
    • 2005
  • The Pt counter electrode of a dye-sensitized solar cell (DSSC) plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, Pt electrodes were prepared by a electro-deposition and a RF magnetron sputtering. Electrochemical behavior of Pt electrodes was compared using cyclic-voltammetry and impedance spectroscopy. Surface morphology of Pt electrodes was investigated by FE-SEM and AFM. I-V characteristics of DSSC were measured and discussed in association with the surface properties of counter electrode. As a result, electrochemical properties of electro-deposited Pt electrode were superior to that of sputtered Pt electrode. This is likely that enlarged area of surface in electro-deposited Pt electrode in comparison with the case of sputtered Pt electrode playa role in enhancing such electrochemical properties.

태양전지용 다결정 실리콘 박막의 용액 성장법에 관한 연구 (Polycrystalline silicon films for solar cell application by solution growth)

  • Soo Hong Lee;Martin A. Green
    • 한국결정성장학회지
    • /
    • 제4권2호
    • /
    • pp.119-130
    • /
    • 1994
  • 저팽창 보로실리케이트 유리기판상에 직접 결정질실리콘 박막을 성장시켜 주는 것이 고순도 금속을 사용한 용액성장법으로는 어려운 관계로 18가지 다른 코팅을 유리기판상에 입혀 실험한 결과 알루미늄과 마그네슘 처리한 기판과 스퍼터링 방법으로 유리기판상에 실리콘 박막을 열처리해준 후 용액성장시켜준 기판의 경우에 양호한 결과가 나왔다. 성장온도 $420^{\circ}C~520^{\circ}C$ 범위에서 성장시킨 이박막은 태양전지와 태양전지의 모듈가격을 낮추는데 응용될 것으로 사료된다.

  • PDF

결정질 태양전지를 위한 HF 화학 패시베이션 연구 (A Study on HF Chemical Passivation for Crystalline Silicon Solar Cell Application)

  • 최정호;노시철;유동열;이진화;김영철;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.51-55
    • /
    • 2011
  • The surface passivation is one of the important methods that can improve the efficiency of solar cells and can be classified into two methods: wet-chemical passivation and film passivation. In this paper, chemical HF treatment were employed for the passivation of n-type silicon wafers and their effects were studied. To investigate film passivation effects, the silicon nitride films were also deposited by PECVD (plasma-enhanced chemical vapor deposition) on n-type silicon wafers treated with chemical HF. The minority carrier lifetime measurements were used for evaluation of the passivation characteristics in the all experiments steps. We confirmed that the minority carrier lifetime was improved with chemical HF treatment due to passivation effects by H-termination.

Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells

  • Hwang, Kyung-Jun;Yoo, Seung-Joon;Jung, Sung-Hoon;Park, Dong-Won;Kim, Sun-Il;Lee, Jae-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.172-176
    • /
    • 2009
  • The nature and morphology of titanium dioxide films play a significant role in determining the overall efficiency of dye-sensitized solar cell (DSSCs). In this work, the preparation of nanostructured titania particles by sol-gel method (SG-$TiO_2$) and its characterization were investigated for the application of DSSCs. The samples were characterized by XRD, XPS, FE-SEM, BET and FT-IR analysis. The energy conversion efficiency of SG-$TiO_2$ was approximately 8.3 % under illumination with AM 1.5 (100 mW/$cm^2$) simulated sunlight. DSSCs made of SG-$TiO_2$ nanocrystalline films as photoanodes achieved better energy conversion efficiency compared to those prepared using commercially available Degussa P25.

결정질 실리콘 태양전지의 효율개선을 위한 실리콘 역 피라미드 구조체 최적화 (Fabrication of Si Inverted Pyramid Structures by Cu-Assisted Chemical Etching for Solar Cell Application)

  • 박진형;남윤호;유봉영;이정호
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.315-321
    • /
    • 2017
  • Antireflective pyramid arrays can be readily obtained via anisotropic etching in alkaline solution (KOH, NaOH), which is widely used in crystalline-Si (c-Si) solar cells. The periodic inverted pyramid arrays show even lower light reflectivity because of their superior light-trapping characteristics. Since this inverted pyramidal structures are mostly achieved using very complex techniques such as photolithograpy and laser processes requiring extra costs, here, we demonstrate the Cu-nanoparticle assisted chemical etching processes to make the inverted pyramidal arrays without the need of photolithography. We have mainly controlled the concentration of $Cu(NO_3)_2$, HF, $H_2O_2$ and temperature as well as time factors that affecting the reaction. Optimal inverted pyramid structure was obtained through reaction parameters control. The reflectance of inverted pyramid arrays showed < 10% over 400 to 1100 nm wavelength range while showing 15~20% in random pyramid arrays.

HIGH EFFICIENCY, BACK-CONTACT BIFACIAL SOLAR CELLS AND APPLICATION

  • Campbell, Matthew P.;DeCeuster, Denis M.;Cousins, Peter;Detrick, Adam;Manalo, Raphael;Mulligan, William P.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.402-405
    • /
    • 2008
  • SunPower's corporate mission is to reduce the installed cost of solar electricity 50% by 2012. As part of that mission, the company is continually exploring novel technologies that might enable progress towards the goal. This paper describes SunPower's efforts to decrease the levelized cost of electricity for solar power plants through the use of bifacial cell and system technology. The results of the first production run of SunPower bifacial cells and modules are presented. Future bifacial system development plans are reviewed.

  • PDF

TCO-less 염료태양전지 제작 (Synthesis of TCO-less Dye Sensitized Solar Cells)

  • 허종현;곽동주;성열문;김태흥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1074_1075
    • /
    • 2009
  • A new type of dye-sensitized solar cells(DSCs) based on Ti-mesh electrode without using TCO layer is fabricated for high-efficient low-cost solar cell application. The TCO-less DSCs sample is composed of a [glass/ dye sensitized $TiO_2$ layer/ Ti-mesh electrode/ electrolyte/ metal counter electrode]. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3^-$ through the mesh hole. Thin Ti-mesh ($\sim40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. Electrical performance of as-fabricated DSCs is presented and discussed in detail.

  • PDF

Nanoscale Charge Transport in P3HT:PCBM:Gold Nanoparticle Composite Materials for Polymer Solar Cell Application

  • Nguyen, Thuc-Quyen;Dante, Mark;Peet, Jeffrey;Bazan, Guillermo
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.274-274
    • /
    • 2006
  • Recently, conjugated polymer solar cells have attracted a great deal of attention. In this work, we applied the various scanning probe techniques to characterize composite materials typically used to fabricate polymer solar cells: poly-3(hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and P3HT/PCBM/Au nanoparticle (NP) samples. The latter is studied due to the idea of using the gold NP surface plasmon to enhance the optical absorption of the composite films. AFM is used to characterize the film morphology whereas conducting AFM is used to study the charge transport properties at the nanoscale. We found that there is a direct correlation between the nanoscale charge transport measurements and the device efficiencies.

  • PDF

PV의 건축물 적용기법에 관한 연구 (A Study on the Application Method of Photovoltaic in Building)

  • 이응직;김회서
    • 한국태양에너지학회 논문집
    • /
    • 제22권2호
    • /
    • pp.1-10
    • /
    • 2002
  • This study is a study on the building integrated method of Photovoltaic. It was analyzed into a basic installation condition and an integrated form in this study. And it was confirmed through the 3D simulation & drawing work of an integrated situation to the real domestic building. The Photovoltaic installation of the country to an optimal efficiency for the year must be installed to the due south with an angle of thirty degrees. And also a module spacing must be more than doubled from the bottom to the top of module to prevent from efficiency falling by a shadow of photovoltaic module in a roof setting of flat roof. If Photovoltaic module is an adequate material that is a basic requirement as a building's finishing material, it's not only an efficiency of alternation with an existing finishing material but also a building's design element.