• Title/Summary/Keyword: Solar activity

Search Result 354, Processing Time 0.032 seconds

Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조)

  • An, HyeLan;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.250-257
    • /
    • 2016
  • Octahedral $Co_3O_4$/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral $Co_3O_4$ grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral $Co_3O_4$/CNFs composites exhibit high photocurrent density ($12.73mA/m^2$), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial $Co_3O_4$, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral $Co_3O_4$/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.

Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 비백금 상대전극을 위한 니켈 나노입자-흑연질 탄소나노섬유 복합체)

  • Oh, Dong-Hyeun;Koo, Bon-Ryul;Lee, Yu-Jin;An, HyeLan;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.649-655
    • /
    • 2016
  • Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dye-sensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density ($14.26mA/cm^2$), and superb power-conversion efficiency (6.72%) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells (고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극)

  • Kim, Ji-Soo;Sim, Eun-Ju;Dao, Van-Duong;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.262-267
    • /
    • 2016
  • In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

Feeding specificity and photosynthetic activity of Korean sacoglossan mollusks

  • Klochkova, Tatyana A.;Han, Jong-Won;Kim, Ju-Hyoung;Kim, Kwang-Young;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.217-227
    • /
    • 2010
  • During feeding on algal cytoplasm, some sacoglossans are known to keep the chloroplasts photosynthetically active for days to months in their digestive cells. Korean sacoglossan mollusks containing functional chloroplasts were screened using an in vivo chlorophyll fluorescence measuring system (pulse amplitude modulation, PAM). We collected six sacoglossans feeding on siphonous and siphonocladous green algae (Elysia atroviridis, E. nigrocapitata, E. ornata, Ercolania boodleae, Placida dendritica, Stiliger sp.) and one feeding on ceramiaceaen algae (Stiliger berghi) and performed feeding experiments using 37 algal species. Three species of Elysia showed strong photosynthetic activity for months. However, P. dendritica maintained functional chloroplasts only for several hours after feeding. E. boodleae, S. berghi, and Stiliger sp. showed no photosynthetic activity in any circumstances. Among all species, E. nigrocapitata was capable to tolerate the longest period of starvation for over 4 months. Four 'solar powered' sacoglossans bonded avidly to their specific algal food. Each species attached to and consumed only one algal species when several algae were given together. While they occasionally consumed other algae after prolonged starvation, they always reverted to their specific algae when available.

On the Variability of the Ionospheric F2-Layer During the Quietest Days in December 2009

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.273-278
    • /
    • 2016
  • December 2009 was one of the quietest (monthly Ap=2) months over the last eight decades. It provided an excellent opportunity to study the day-to-day variability of the F2 layer with the smallest contribution due to geomagnetic activity. With this aim, we analyze hourly values of the F2-layer critical frequency (foF2) recorded at 18 ionosonde stations during the magnetically quietest (Ap=0) days of the month. The foF2 variability is quantified as the relative standard deviation of foF2 about the mean of all the "zero-Ap" days of December 2009. This case study may contribute to a more clear vision of the F2-layer variability caused by sources not linked to geomagnetic activity. In accord with previous studies, we find that there is considerable "zero-Ap" variability of foF2 all over the world. At most locations, foF2 variability is presumably affected by the passage of the solar terminator. The patterns of foF2 variability are different at different stations. Possible causes of the observed diurnal foF2 variability may be related to "meteorological" disturbances transmitted from the lower atmosphere or/and effects of the intrinsic turbulence of the ionosphere-atmosphere system.

Standard test method for Photocatalytic activity with optical fiber (광섬유를 이용한 광촉매 성능 측정 표준화의 이해)

  • Joo Hyun-Ku;Ha Jin-Wook;Cho Duk-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.331-336
    • /
    • 2005
  • Recently, Japan has showed strong demand for protection of consumers against misleading specification provided by producers, establishing the committee for JIS and ISO. To protect domestic market and overcome potential subordinate relationship in overseas market, several universities and institutes in Korea have performed collaborative works on the standardization of test method f3r photocatalytic activity concerning the selected application fields. This article deals with the process and the result for the method of testing photocatalytic sol or suspended powder using optical fiber. Currently, this method is Intended for TiO2, but can be applied for various photocatalytic raw materials that can be activated by visible light and solar irradiation.

  • PDF

Purification and Characterization of Polyphenol Oxidase from Oyster Mushroom (Pleurotus ostreatus) (느타리버섯(Pleurotus ostreatus)의 Polyphenol Oxidase 분리 정제 및 특성 조사)

  • Choi, Ju-Hee;Kim, Hyun-Jin;Park, Sun-Young;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1447-1452
    • /
    • 2011
  • Polyphenol oxidase (PPO) isoforms were partially purified from oyster mushroom (Pleurotus ostreatus) using various chromatography techniques, and their characteristics of heat stability, substrate affinity, optimum pH, and optimum temperature were investigated. Three PPO isoforms named PO-I, PO-II-1, and PO-II-2 were partially purified from oyster mushroom. The molecular weight of PO-II-1 was 70 kDa and PO-I and PO-II-2 were less than 6 kDa each. Characterization was carried out using a PPO isoform partially purified by hydrophobic interaction chromatography. Optimum temperature was $55^{\circ}C$ and optimum pH 5.0. However, the PPO was inactivated at neutral pH or by heating at $80^{\circ}C$ for 30 min, while the 40% PPO still remained active after heating at $60^{\circ}C$ for 45 min. The PPO isoform showed the highest substrate affinity to chlorogenic acid and pyrogallol, in which KM values were 1.01 and 2.06 mM, respectively. Therefore, these results suggested that the mushrooms should be stored at a pH higher than 7.0 and at a low temperature to prevent enzymatic browning.

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Relations Among Sunspots, CMEs and Geomagnetic Storms in Solar Cycle 23 (태양주기 23의 흑점, CME 및 지자기폭풍의 빈도간 상관관계 연구)

  • Rho, Su-Lyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.9-24
    • /
    • 2009
  • We compare the relation among the annual distribution of sunspots: coronal mass ejections (CMEs) and geomagnetic storms and North-South asymmetry during solar cycle 23. For this purpose, we calculate correlation coefficients between (i) annual distribution and N-S asymmetry of CMEs - sunspots (ii) distribution of CMEs - occurrence number of geomagnetic storms (iii) distribution of sunspots - occurrence number of geomagnetic storms. We find that (i) the annual distribution of total CMEs has good correlation with distribution of annual average of sunspots but poor correlation with N-S asymmetry of sunspots, N-S asymmetry of CMEs has good correlation with N-S asymmetry of sunspots: (ii) total and N-S asymmetry of CMEs have poor correlation with occurrence number of geomagnetic storms, it's, however, well correlated with the classified groups of CMEs (Ap, Dst and an indices vs. fast CMEs($\upsilon$ > $1000kms^{-1}$), Dst index vs. Halo CMEs), and (iii) sunspot numbers and area are correlated with occurrence number of geomagnetic storms. We conclude that annual distribution of CMEs and sunspots have well correlated with geomagnetic storms, N-S asymmetry of CMEs and sunspots have poor correlated with the geomagnetic storms.

Development of Visible-light Responsive $TiO_2$ Thin Film Photocatalysts by Magnetron Sputtering Method and Their Applications as Green Chemistry Materials

  • Matsuoka, Masaya
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3.1-3.1
    • /
    • 2010
  • Water splitting reaction using photocatalysts is of great interest in the utilization of solar energy [1]. In the present work, visible light-responsive $TiO_2$ thin films (Vis-$TiO_2$) were prepared by a radio frequency magnetron sputtering (RF-MS) deposition method and applied for the separate evolution of $H_2$ and $O_2$ from water as well as the photofuel cell. Special attentions will be focused on the effect of HF treatment of Vis-$TiO_2$ thin films on their photocatalytic activities. Vis-$TiO_2$ thin films were prepared by an RF-MS method using a calcined $TiO_2$ plate and Ar as the sputtering gas. The Vis-$TiO_2$ thin films were then deposited on the Ti foil substrate with the substrate temperature at 873 K (Vis-$TiO_2$/Ti). Vis-$TiO_2$/Ti thin films were immersed in a 0.045 vol% HF solution at room temperature. The effect of HF treatments on the activity of Vis-$TiO_2$/Ti thin films for the photocatalytic water splitting reaction have been investigated. Vis-$TiO_2$/Ti thin films treated with HF solution (HF-Vis-$TiO_2$/Ti) exhibited remarkable enhancement in the photocatalytic activity for $H_2$ evolution from a methanol aqueous solution as well as in the photoelectrochemical performance under visible light irradiation as compared with the untreated Vis-$TiO_2$/Ti thin films. Moreover, Pt-loaded HF-Vis-$TiO_2$/Ti thin films act as efficient and stable photocatalysts for the separate evolution of $H_2$ and $O_2$ from water under visible light irradiation in the presence of chemical bias. Thus, HF treatment was found to be an effective way to improve the photocatalytic activity of Vis-$TiO_2$/Ti thin films. Furthermore, unique separate type photofuel cell was fabricated using a Vis-$TiO_2$ thin film as an electrode, which can generate electrical power under solar light irradiation by using various kinds of biomass derivatives as fuel. It was found that the introduction of an iodine ($I^-/{I_3}^-$) redox solution at the cathode side enables the development of a highly efficient photofuel cell which can utilize a cost-efficient carbon electrode as an alternative to the Pt cathode.

  • PDF