Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.11.649

Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells  

Oh, Dong-Hyeun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Lee, Yu-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
An, HyeLan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.11, 2016 , pp. 649-655 More about this Journal
Abstract
Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dye-sensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density ($14.26mA/cm^2$), and superb power-conversion efficiency (6.72%) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
Keywords
Ni nanoparticles-graphitic carbon nanofibers; catalytic graphitization; dye-sensitized solar cells; counter electrodes; Pt-free;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 H. L. An, H.-R. Kang, H. J. Sun, J. H. Han and H.-J. Ahn, Korean J. Mater. Res., 25, 672 (2015).   DOI
2 M. Wu, X. Lin, T. Wang, J. Qiu and T. Ma, Energy Environ. Sci., 4, 2308 (2011).   DOI
3 W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, ACS Appl. Mater. Interfaces, 1, 1145 (2009).   DOI
4 M. Wang, A. M. Anghel, B. Marsan, N.-L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 131, 15976 (2009).   DOI
5 D.-H. Oh, H. L. An, B.-R. Koo and H.-J. Ahn, J. Korean Powder Metall. Inst., 23, 95 (2016).   DOI
6 F. Gong, X. Xu, Z. Li, G. Zhou and Z.-S. Wang, Chem. Commun., 49, 1437 (2013).   DOI
7 H.-R. An, H. An, W.-B. Kim and H.-J. Ahn, ECS Solid State Lett., 3, M33, (2014).   DOI
8 G.-H. An, T.-K. Lee and H.-J. Ahn, J. Korean Powder Metall. Inst., 22, 367 (2015).
9 K. Saranya, A. Subramania, N. Sivasankar and S. Mallick, Mater. Res. Bull., 75, 83 (2016).   DOI
10 I. M. A. Mohamed, M. Motlak, M. S. Akhtar, A. S. Yasin, M. H. E.-Newehy, S. S. A.-Deyab and N. A. M. barakat, Ceramics Int., 42, 146 (2016).   DOI
11 P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong and Q. Qiao, ACS Appl. Mater. Interfaces, 2, 3572 (2010).   DOI
12 H.-R. An and H.-J. Ahn, Korean J. Mater. Res., 24, 565 (2014).   DOI
13 G. Veerappan, K. Bojan and S.-W. Rhee, ACS Appl. Mater. Interfaces, 3, 857 (2011).   DOI
14 Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012).   DOI
15 T. A. Ezquerra, M. T. Connor, S. Roy, M. Kulescza, J. F.- Nascimento and F. J. B.-Calleja, Compos. Sci. Technol., 61, 903 (2001).   DOI
16 A. Yousef, M. A. Akhtar, N. A. M. Barakat, M. Motlak, O.-B. Yang and H. Y. Kim, Electrochim. Acta, 102, 142 (2013).   DOI
17 X. Chen, M. Li, J. Guan, X. Wang, C.T. Williams and C. Liang, Ind. Eng. Chem. Res., 51, 3604 (2012).   DOI
18 S.Y. Gu, J. Ren and G.J. Vancso, Eur. Polym. J., 41, 2559 (2005).   DOI
19 Q. Lin, Z. Feng, Z. Liu, Q. Guo, Z. Hu, L. He and H. Ye, Carbon, 88, 252 (2015).   DOI
20 S. Arai, M. Endo and N. Kaneko, Carbon, 42, 641 (2004).   DOI
21 Y. Liu, Q. Liu, J. Gu, D. Kang, F. Zhou, W. Zhang, Y. Wu and D. Zhang, Carbon, 64, 132 (2013).   DOI
22 H. L. An, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 26, 250 (2016).   DOI
23 M. Rameez, K. Saranya, A. Subramania, N. Sivasankar and S. Mallick, Appl. Phys. A, 122, 71 (2016)..
24 N. Deprez and D. S. Mclachlan, J. Phys. D: Appl. Phys., 21, 101 (1988).   DOI
25 M. Gratzel, J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003).   DOI
26 M. Gratzel, Inorg. Chem., 44, 6841 (2005).   DOI
27 J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181, 172 (2008).   DOI