• Title/Summary/Keyword: Solar Transmittance

Search Result 366, Processing Time 0.025 seconds

Effect of Indium Zinc Oxide Transparent Electrode on Power Conversion Efficiency of Flexible Dye-Sensitized Solar Cells (플렉시블 염료 감응형 솔라셀의 효율에 미치는 Indium Zinc Oxide 투명전극의 영향)

  • Lee, Do Young;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • IZO thin films have been deposited on poly(ethylene terephthalate) flexible substrate under varying radio frequency (rf) power, process pressure and thickness of IZO films using rf magnetron sputtering under $Ar/O_2$ gas mix. As the process pressure increased, the deposition rate was slightly increased and the transmittance showed little change, but the resistivity was increased. With increasing rf power, the great increase in deposition rate was observed but the transmittance showed a slight change only, and the resistivity was decreased. In addition, an attempt was made to find the optimal thickness of IZO films under varying the thickness of IZO films at the process conditions of 1 mTorr pressure and 90 W rf power, which showed lowest resistivity. IZO thin films with the thickness of $1,500{\AA}$ showed lowest resistivity and also showed highest transmittance around the wavelength zone of the maximum absorption. The power conversion efficiency of solar cells fabricated using various transparent electrodes with different thicknesses were measured and the solar cell with IZO electrode of $1,500{\AA}$ showed the maximum conversion-efficiency of 2.88 %.

A Sensitivity Analysis about Solar Heat Gain and Heating Load of ZeSH According to Optical Characteristics of Window system (창호의 광학적 특성에 따른 ZeSH의 일사취득 및 난방부하에 관한 민감도 분석)

  • Son, Sun-Woo;Baek, Nam-Choon;Suh, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.66-71
    • /
    • 2009
  • To reduce the building energy consumption, the major advanced nations are conducting actively many researches on so called a "self-sufficient building(or other words zero energy building)" which can support its required energy by itself. Given this background, KIER(Korea Institute of Energy Research) built full size test-bed of the zero energy solar house in early 2002, and has studied on the self-sufficient heating load up to now. We analyse the sensitivity between the heating load and the solar radiation gain according to the change the effective transmittance of windows. The authors classified 9 cases by solar transmittance of glass. The results demonstrate the solar radiation amount is 0.466 MWh from the eastern zone of Fl.,1(the first floor), 0.332 MWh from Fl.,2(the second floor), 1.194 MWh form the southern zone of F1., and 0.822 MWh from the southern zone of Fl.,2 on the case 1(each cases are classified by window types). On the case 9, the solar radiation amount is 3.127 MWh, 2.662 MWh, 8.799 MWh and 6.078 MWh from the same condition. For the Fl.,1, the amount of Heat Load that is saved per year ranged 10.5 to 48 %, and the reduction was anywhere from 0.2 to 17.9% for Fl.,2

  • PDF

Analysis Thermal Performance of PV/Thermal Collector with Dye-sensitized Solar Cell Module (염료감응형태양전지 모듈 적용 PVT 집열기의 열적 성능 분석)

  • Jang, Han-Bin;Mun, Jong-Hyeok;Gang, Jun-Gu;Kim, Jin-Hui;Kim, Jun-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.273-276
    • /
    • 2009
  • Photovoltaic-thermal(PVT) collectors are a combination of photovoltaic modules with solar thermal collectors, forming one device that receives solar radiation and produces electricity and heat simultaneously. Of various PV modules, dye-sensitized solar cell(DSC) is a relatively new type of solar cell technology that can transmit light while they can generate electricity. With this aspect, DSC can be applied into solar thermal collectors. The object of this study is to evaluate the thermal performance of PVT collector with DSC. The thermal performance of the DSC PVT combind collector was measured in outdoor conditions with the solar radiation of over $700W/m^2$. In this study, the PVT collector with the 30% light transmittance of DSC achieved its thermal efficiency of about 36%.

  • PDF

Comparison assessment of semi-transparent solar cell for BIPV windows (반투과형 태양전지를 이용한 창호형 BIPV 건물의 환경성능 분석)

  • Chung, Min Hee
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2020
  • To implement the planning of zero-energy buildings, their energy performance must be improved, and renewable energy applications must also be included. To accelerate the use of renewable energies in such buildings, BIPVs should be actively used in windows and on roofs. Window-type BIPVs are being developed in various forms depending on the size, composition, area ratio of the window, specification of glass, and so on. To analyze the applicability of various solar cells as window-type BIPVs, in this study, we evaluated their applicability, at the current development level, by analyzing the indoor illuminance, heat gain and heat loss; the cooling, heating, and lighting energy levels; and the generation performance of the various solar cells. To enhance the future applicability of window type BIPV, we analyze the overall energy performance of the building, according to changes in visible light transmittance and generation efficiency. The main research results are as follows. The area ratios above the standard illuminance, based on the window type and according to the VLT, were in order of low-e glazing, a-Si window, DSSC window, and c-Si window. The heat gain of the semi-transparent solar cell winodw was remarkably low. The energy consumption of buildings was highest in the order of c-Si window, DSSC window, a-Si window, and clear low-e window. However, in the case of including the power generation performance of the solar cell, the energy consumption was found to be high in order of DSSC window, c-Si window, a-Si window, and clear low-e window. In the future, if a window-type BIPV is developed, we believe that improvement in power generation performance and improvement in visible light transmittance will be needed.

A Study on the Thermal Performance of a Solar House by a F-chart Method (F-chart 설계법(設計法)에 의한 태양열주택(太陽熱住宅)의 난방성능(暖房性能)에 관(關)한 연구(硏究))

  • Lee, Young-Soo;Seoh, Jeong-Ill;Yim, Jang-Soon
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 1982
  • This paper presents a method. for estimating the useful output of solar heating sys-terns. Heating load calculations, climatic data and various conditions are used in this procedure to estimate the fraction of the monthly heating load supplied by solar energy for a particular system the design procedure presented in this paper referred to the f-chart method. The results of this study are as follows; 1) The collected energy is not rised lineary to collector area. 2) If the heating area has equivalent solar collector area, the solar energy utilization for space heating is over 90%. 3) Transmittance- absorptance product for radiation at normal incidence, (${\tau}{\alpha}$)/(${\tau}{\alpha}$)n, during most of the heating season is 0.92 for a two-cover collector. 4) Orientation of the collector has little effect on the annual performance of solar heating system within the $15^{\circ}$.

  • PDF

The Properties Characterization of ZnO Thin Film Grown by RF Sputtering (RF스퍼터링법으로 제작한 ZnO박막의 특성평가)

  • Jung, S.M.;Chong, K.C.;Choi, Y.S.;Kim, D.Y.;Kim, C.S.;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1433-1435
    • /
    • 1997
  • ZnO shows the properties of wide conductivity variation, high optical transmittance, and excellent piezoelectricity. Using these properties of ZnO, the material applications were extended to sensors, SAW filters, solar cells, and display devices. This paper investigated transmittance influencing factors for thin film ZnO grown by RF magnetron sputtering. The growth rate and structural investigation were carried out in conjunction with optical transmittance characteristics of thin film ZnO. The glass substrate temperature of $175^{\circ}C$ exhibited a preferential crystallization along (002) orientation. Transmittance of ZnO film deposited at the substrate temperature of $175^{\circ}C$ showed higher than 92%. An active sputter gas was investigated with a variation of $O_2$ partial pressure from 0 to 10% in an Ar atmosphere. ZnO film grown in 100% Ar gas shows that a reduced transmittance of 82% at the short wavelengths and decreased resistivity value. As the partial pressure of $O_2$ gas increased, the optical transmittance was increased above 90% at the short wavelengths, however, resistivity was drastically increased to higher than $10^4{\Omega}$-cm.

  • PDF

Preparation of ZnO:Al transparent conductive film for Solar cell (태양전지용 ZnO:Al 투명전 도막의 제작)

  • 양진석;성하윤;금민종;신성권;손인환;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.463-466
    • /
    • 2001
  • This detailed study of electrical, crystallographic and optical properties in Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets is described. Optimal transmittance and resistivity was obtained by controlling flow ratio of O$_2$gas. When the O$_2$ gas ratio of 0.25 and substrate temperature R.T., ZnO:Al thin film deposited had strongly oriented c-axis and the lower resistivity ( <10$\^$-4/ $\Omega$cm). The optical transmittance was above 80% in visible range.

  • PDF

The Analysis of Optical Characteristics of Glasses for PV Module Application (태양전지모듈적용 투명유리의 광특성 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.98-103
    • /
    • 2008
  • The glass for crystalline PV module fabrication should have high thermal and mechanical resistance to environmental also have high transparency. In this paper, we analyze the optical characteristics of glasses for photovoltaic module application. The transmittance of several glasses are measured. The effects of texturing on low iron glass, glass thickness, anti-reflective glass, photocatalyst-treated glass and special glass are compared each other. Then this will give some information to select PV glass for manufacturing. The detailed analysis is described in the following paper.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Analysis of Electrical Characteristics of Silicon Solar cell according to the ARC thickness using Medici Program (메디치 프로그램을 이용한 실리콘 솔라셀의 ARC 두께에 따른 전기적 특성 해석)

  • Kim, Jae-Gyu;Kim, Ji-Man;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3853-3858
    • /
    • 2010
  • This paper shows electrical analysis of the silicon solar cell according to the various ARC thickness using Medici program. we built a mesh structure of the solar cell that use ARC consisting of ITO(Indium-Tin-Oxide) transparent electrode, for the Medici modeling. About various oxide layer thickness of the ARC for 30 nm, 60 nm, 90 nm, changes of the I-V curve, Isc, Voc, transmittance and external collection efficiency performed according to wavelength of Incident ray. Simulation results show maximum power 22 mW/$cm^2$, fill factor 0.83 in condition of 60 nm ITO thickness.