• Title/Summary/Keyword: Solar Transmission

Search Result 268, Processing Time 0.033 seconds

Transparent conducting ZnO thin films deposited by a Sol-gel method (솔젤법으로 제작한 ZnO 박막의 광전도특성 연구)

  • Kim, Gyeong-Tae;Kim, Gwan-Ha;Kim, Jong-Gyu;U, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.320-320
    • /
    • 2007
  • Nowadays, ZnO thin films are investigated as transparent conductive electrodes for use in optoelectronics devices including flat displays, thin films transistors, solar cells because of their unique optical and electrical properties. For the use as transparent conductive electrodes, a film has to have low resistivity, high absorption in the ultra violent light region and high optical transmission in the visible region. Different technologies such as electron beam evaporation, chemical vapor deposition, laser evaporation, DC and RF magnetron sputtering and have been reported to produce thin films of ZnO with adequate performance for applications. However, highly transparent and conductive doped-ZnO thin films deposited by a metal-organic decomposition method have not been reported before. In this work, the effect of dopant concentration, heating treatment and annealing in areducing atmosphere on the structure, morphology, electrical and optical properties of ZnO thin films deposited on glass substrates by a Sol-gel method are investigated.

  • PDF

Rapid Fabrication of Micro-nano Structured Thin Film for Water Droplet Separation using 355nm UV Laser Ablation (355 nm UV 레이저 어블레이션을 이용한 마이크로-나노 구조의 액적 분리용 박막 필터 쾌속 제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.799-804
    • /
    • 2012
  • Recently micro-nano structures has widely been reported to improve the performance of waterproof, heat isolation, sound and light absorption in various fields of electric devices such as mobiles, battery, display and solar panels. A lot of micro-sized holes on the surface of thin film provide excellent sound, or heat, or light transmission efficiency more than solid film and simultaneously nano-sized protrusions around micro hole increase the hydrophobicity of the surface of thin film because of lotus leaf effects as generally known previously. In this paper new rapid fabrication process with 355 nm UV laser ablation was proposed to get micro-nano structures on the surface of thin film, which have only been observed at higher laser fluence. Developed thin micro-nano structured film was also investigated the hydrophobic property by measuring the contact angle and demonstrated the possibility to apply to water droplet separation.

Properties of Carbon Pastes Prepared with Mixing Ratios of Nano Carbon and Graphite Flakes

  • Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.615-619
    • /
    • 2018
  • To produce carbon electrodes for use in perovskite solar cells, electrode samples are prepared by mixing various weight ratios of 35 nm nano carbon(NC) and $1{\mu}m$ graphite flakes(GF), GF/(NC+GF) = 0, 0.5, 0.7, and 1, in chlorobenzene(CB) solvent with a $ZrO_2$ binder. The carbon electrodes are fabricated as glass/FTO/carbon electrode devices for microstructure characterization using transmission electron microscopy, optical microscopy, and a field emission scanning electron microscopy. The electrical characterization is performed with a four-point probe and a multi tester. The microstructure characterization shows that an electrode with excellent attachment to the substrate and no surface cracks at weight ratios above 0.5. The electrical characterization results show that the sheet resistance is <$70{\Omega}/sq$ and the interface resistance is <$70{\Omega}$ at weight ratios of 0.5 and 0.7. Therefore, a carbon paste electrode with microstructure and electrical properties similar to those of commercial carbon electrodes is proposed with an appropriate mixing ratio of NC and GF containing a CB solvent and $ZrO_2$.

Design and Implementation of Hadoop-based Big-data processing Platform for IoT Environment (사물인터넷 환경을 위한 하둡 기반 빅데이터 처리 플랫폼 설계 및 구현)

  • Heo, Seok-Yeol;Lee, Ho-Young;Lee, Wan-Jik
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.194-202
    • /
    • 2019
  • In the information society represented by the Fourth Industrial Revolution, various types of data and information that are difficult to see are produced, processed, and processed and circulated to enhance the value of existing goods. The IoT(Internet of Things) paradigm will change the appearance of individual life, industry, disaster, safety and public service fields. In order to implement the IoT paradigm, several elements of technology are required. It is necessary that these various elements are efficiently connected to constitute one system as a whole. It is also necessary to collect, provide, transmit, store and analyze IoT data for implementation of IoT platform. We designed and implemented a big data processing IoT platform for IoT service implementation. Proposed platform system is consist of IoT sensing/control device, IoT message protocol, unstructured data server and big data analysis components. For platform testing, fixed IoT devices were implemented as solar power generation modules and mobile IoT devices as modules for table tennis stroke data measurement. The transmission part uses the HTTP and the CoAP, which are based on the Internet. The data server is composed of Hadoop and the big data is analyzed using R. Through the emprical test using fixed and mobile IoT devices we confirmed that proposed IoT platform system normally process and operate big data.

Surface Temperature Retrieval from MASTER Mid-wave Infrared Single Channel Data Using Radiative Transfer Model

  • Kim, Yongseung;Malakar, Nabin;Hulley, Glynn;Hook, Simon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.151-162
    • /
    • 2019
  • Surface temperature has been derived from the MODIS/ASTER airborne simulator (MASTER) mid-wave infrared single channel data using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model with input data including the University of Wisconsin (UW) emissivity, the National Centers for Environmental Prediction (NCEP) atmospheric profiles, and solar and line-of-sight geometry. We have selected the study area that covers some surface types such as water, sand, agricultural (vegetated) land, and clouds. Results of the current study show the reasonable geographical distribution of surface temperature over land and water similar to the pattern of the MASTER L2 surface temperature. The thorough quantitative validation of surface temperature retrieved from this study is somehow limited due to the lack of in-situ measurements. One point comparison at the Salton Sea buoy shows that the present estimate is 1.8 K higher than the field data. Further comparison with the MASTER L2 surface temperature over the study area reveals statistically good agreement with mean differences of 4.6 K between two estimates. We further analyze the surface temperature differences between two estimates and find primary factors to be emissivity and atmospheric correction.

Crystallized Nano-thick TiO2 Films with Low Temperature ALD Process (저온 원자층증착법으로 제조된 결정질 TiO2 나노 박막)

  • Park, Jongsung;Han, Jeungjo;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.449-455
    • /
    • 2010
  • To enhance the efficiency of dye sensitized solar cells, we proposed crystalline anatase-$TiO_{2}$ by using a low temperature process ($150^{\circ}C{\sim}250^{\circ}C$). We successfully fabricated 30 nm-$TiO_{2}$ at a fixed atomic layer deposition condition of 1.0 sec of TDMAT pulse, 20 sec of TDMAT purge, 0.5 sec of H$_{2}$O pulse, and 20 sec of H$_{2}$O purge. In order to examine the microstructure, phase, and band-gap of the TiO$_{2}$ respectively, we employed a Nano-Spec, transmission electron microscope, high resolution XRD, Auger electron spectroscopy, scanning probe microscope, and UV-VIS-NIR. We were able to fabricate a crystalline anatase-phase of 30 nm-TiO$_{2}$ successfully at temperatures above $180^{\circ}C$. Our results showed that our proposed low temperature ALD process (below $200^{\circ}C$) might be applicable to glass and flexible polymer substrates.

A Study on the Satellite Launch Vehicle Separation Detection Interface to Improve the Reliability of the Launch and Early Operation Phase

  • Lee, Nayoung;Kwon, Dong-young;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Cheon, Yee-Jin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2021
  • The launch vehicle (LV) separation detection interface of the satellite, which is designed to initiate the launch and early operation phase (LEOP) for S-band data transmission and the solar array deployment after the LV separation, is one of the hazard items at the launch site. Therefore, this interface should satisfy the single-fault tolerance requirement for the range safety. In this paper, we discuss the LV separation detection interfaces for two different satellite launch configurations and propose a method to guarantee for the satellite to start the LEOP even under the emergency case such as a partial separation from the LV. Furthermore, the proposed method meets the range safety requirement of the launch site. As this method only changes the external harness configuration of the satellite, it increases the reliability of the satellite early operation without any modification of the existing internal logics to detect the separation event.

A PRELIMINARY STUDY OF EFFECT OF THE GREEN FEATURE - WING WALLS ON NATURAL VENTILATION IN BUILDINGS

  • Cheuk Ming Mak;Jian Lei Niu;Kai Fat Chan
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.814-819
    • /
    • 2005
  • There is growing consciousness of the environmental performance of buildings in Hong Kong. The Buildings Department, the Lands Department and the Planning Department of the Hong Kong Government issued the first of a series of joint practice notes [1] to promote the construction of green and innovative buildings. Green features are architectural features used to mitigate migration of noise and various air-borne pollutants and to moderate the transport of heat, air and transmission of daylight from outside to indoor environment in an advantageous way. This joint practice note sets out the incentives to encourage the industry in Hong Kong to incorporate the use of green features in building development. The use of green features in building design not only improves the environmental quality, but also reduces the consumption of non-renewable energy used in active control of indoor environment. Larger window openings in the walls of a building may provide better natural ventilation. However, it also increases the penetration of direct solar radiation into indoor environment. The use of wing wall, one of the green features, is an alternative to create effective natural ventilation. This paper therefore presents a preliminary numerical study of its ventilation performance using Computational Fluid Dynamics (CFD). The numerical results will be compared with the results of the wind tunnel experiments of Givoni.

  • PDF

Monitoring of Mythimna separata Adults by Using a Remote-sensing Sex Pheromone Trap (원격감지 성페로몬트랩을 이용한 멸강나방(Mythimna separata) 성충 예찰)

  • Jung, Jin Kyo;Seo, Bo Yoon;Cho, Jum Rae;Kim, Yong
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • We desinged and evaluated a remote-sensing sex pheromone trap for real-time monitoring of Mythimna separata (Lepidoptera: Noctuidae), a migratory insect in Korea. The system consisted of a modified cone-trap with a sex pheromone lure, a sensing module based on light interruption, a signal transmission module based on code division multiple access, a main electronic board for system control, a power supply based on a solar collector, a stainless steel-pole supporting the system, and a signal collection and display system based on an internet web page. The ratio (>92%) of the actual number of insects to the signal number in the remote-sensing trap was improved by sensing only within a limited period at night on the basis of the insect's circadian rhythm, control of signal sensitivity on the basis of sensing software programming, 1-h interval for signal transmission, and adjustment of the signal transmission program. The signal occurrence pattern in the remote-sensing trap was conclusively similar (correlation coefficient, >0.98) to the actual pattern of adult occurrence in the trap. The result indicated that the remote-sensing trap based on the attraction of the sex pheromone lure for M. separata has a promising potential for practical use. Occurrence of M. separata adults was observed several times in 2011 and 2012, and the peaks were sharp.

Study on the IPMC electrical characteristic change For the utilization of Ocean Current Energy (IPMC 해양 발전 플랜트 모니터링 시스템)

  • Son, Kyung-Min;Kim, Min;Kim, Hyun-jo;Park, Gi-Won;Byun, Gi-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.914-916
    • /
    • 2013
  • Renewable energy from the environment in a variety of ways to obtain various forms of energy. Recent functional polymer composites (EAP) to take advantage of the pressure and vibration of physical energy into electrical energy storage, to take advantage of current collector technology is attracting attention. EAP, a type of IPMC (Ionic exchange Polymer Composite) got a hydrophilic properties, marine power plants is being studied as a source of energy. Studies using IPMC marine power plant because there is a constraint on the time, IPMC in real time, which can measure the power generated by the system is required, Due to the nature of the power plant to be floating in the sea through the power cable and data transmission measurement system is hard drive self-generation and wireless data transmission system is required. In this study, IPMC marine power plant is to develop a system of monitoring. IPMC for several power plants to build individual current-voltage measurement system, CAN communication with the main system to collect all the information and wireless data transmission to occur, and Generation of electricity using solar energy to building systems in real-time without an external power supply to drive the measuring system is to develop a monitoring system.

  • PDF