• Title/Summary/Keyword: Solar Radiation Model

Search Result 444, Processing Time 0.024 seconds

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Comparison of incoming solar radiation equations for evaporation estimation (증발량 산정을 위한 입사태양복사식 비교)

  • Rim, Chang-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.129-143
    • /
    • 2011
  • In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.

Temperature analysis of a long-span suspension bridge based on a time-varying solar radiation model

  • Xia, Qi;Liu, Senlin;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.23-35
    • /
    • 2020
  • It is important to take into account the thermal behavior in assessing the structural condition of bridges. An effective method of studying the temperature effect of long-span bridges is numerical simulation based on the solar radiation models. This study aims to develop a time-varying solar radiation model which can consider the real-time weather changes, such as a cloud cover. A statistical analysis of the long-term monitoring data is first performed, especially on the temperature data between the south and north anchors of the bridge, to confirm that temperature difference can be used to describe real-time weather changes. Second, a defect in the traditional solar radiation model is detected in the temperature field simulation, whereby the value of the turbidity coefficient tu is subjective and cannot be used to describe the weather changes in real-time. Therefore, a new solar radiation model with modified turbidity coefficient γ is first established on the temperature difference between the south and north anchors. Third, the temperature data of several days are selected for model validation, with the results showing that the simulated temperature distribution is in good agreement with the measured temperature, while the calculated results by the traditional model had minor errors because the turbidity coefficient tu is uncertainty. In addition, the vertical and transverse temperature gradient of a typical cross-section and the temperature distribution of the tower are also studied.

Generation of monthly averaged horizontal Radiation based on a regional clearness estimating model (우리나라 지역별 청명도 예측 모델을 이용한 월평균 수평면 일사량 산출)

  • Kim, Jin-Hyo;Kim, Min-Hwi;Kwon, Oh-Hyun;Seok, Yoon-Jin;Jeong, Jae-Weon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.72-80
    • /
    • 2010
  • The main thrust of this paper is to investigate a practical way of generating the monthly averaged daily horizontal solar radiation in Korea. For estimating the horizontal solar radiation, the clearness index($K_T$) and the clearness number($C_N$) which are required for the use of Liu and Jordan's model and ASHRAE Clear Sky model were derived based on the measured weather data. Third-order polynomials returning $K_T$ and��$C_N$ for a given location were derived as a function of cloud amount, month, date, latitude and longitude. The predicted monthly averaged daily horizontal solar radiation values were compared with those acquired from the established design weather data. The MBE(Mean Bias Error) and RMSE (Root Mean Squares for Error) between the predicted values and the measured data were near zero. It means that the suggested third-order polynomials for $K_T$ and $C_N$ have good applicability to Liu and Jordan's model and ASHRAE Clear Sky model.

Analysis of Relationship Between Meteorological Parameters and Solar Radiation at Cheongju (청주지역의 기상요소와 일사량과의 상관관계 분석)

  • Baek, Shin Chul;Shin, Hyoung Sub;Park, Jong Hwa
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.87-96
    • /
    • 2012
  • Information of local solar radiation is essential for many field, including water resources management, crop yield estimation, crop growth model, solar energy systems and irrigation and drainage design. Unfortunately, solar radiation measurements are not easily available due to the cost and maintenance and calibration requirements of the measuring equipment and station. Therefore, it is important to elaborate methods to estimate the solar radiation based on readily available meteorological data. In this study, two empirical equations are employed to estimate daily solar radiation using Cheongju Regional Meteorological Office data. Two scenarios are considered: (a) sunshine duration data are available for a given location, or (b) only daily cloudiness index records exist. Simple linear regression with daily sunshine duration and cloudiness index as the dependent variable accounted for 91% and 80%, respectively of the variation of solar radiation(H) at 2011. Daily global solar radiation is highly correlated with sunshine duration. In order to indicate the performance of the models, the statistical test methods of the mean bias error(MBE), root mean square error(RMSE) and correlation coefficient(r) are used. Sunshine duration and cloudiness index can be easily and reliably measured and data are widely available.

  • PDF

Analysis of Very High Resolution Solar Energy Based on Solar-Meteorological Resources Map with 1km Spatial Resolution (1km 해상도 태양-기상자원지도 기반의 초고해상도 태양 에너지 분석)

  • Jee, JoonBum;Zo, Ilsung;Lee, Chaeyon;Choi, Youngjean;Kim, Kyurang;Lee, KyuTae
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.15-22
    • /
    • 2013
  • The solar energy are an infinite source of energy and a clean energy without secondary pollution. The global solar energy reaching the earth's surface can be calculated easily according to the change of latitude, altitude, and sloped surface depending on the amount of the actual state of the atmosphere and clouds. The high-resolution solar-meteorological resource map with 1km resolution was developed in 2011 based on GWNU (Gangneung-Wonju National University) solar radiation model with complex terrain. The very high resolution solar energy map can be calculated and analyzed in Seoul and Eunpyung with topological effect using by 1km solar-meteorological resources map, respectively. Seoul DEM (Digital Elevation Model) have 10m resolution from NGII (National Geographic Information Institute) and Eunpyeong new town DSM (Digital Surface Model) have 1m spatial resolution from lidar observations. The solar energy have small differences according to the local mountainous terrain and residential area. The maximum bias have up to 20% and 16% in Seoul and Eunpyung new town, respectively. Small differences are that limited area with resolutions. As a result, the solar energy can calculate precisely using solar radiation model with topological effect by digital elevation data and its results can be used as the basis data for the photovoltaic and solar thermal generation.

A Study on Probabilistic Reliability Evaluation of Power System Considering Solar Cell Generators (태양광발전원(太陽光發電原)을 고려한 전력계통(電力系統)의 확률논적(確率論的)인 신뢰도(信賴度) 평가(評價)에 관한 연구(硏究))

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.486-495
    • /
    • 2009
  • This paper proposes a new methodology on reliability evaluation of a power system including solar cell generators (SCG). The SCGs using renewable energy resource such as solar radiation(SR) should be modeled as multi-state operational model because the uncertainty of the resource supply may occur an effect as same as the forced outage of generator in viewpoint of adequacy reliability of system. While a two-state model is well suited for modeling conventional generators, a multi-state model is needed to model the SCGs due to the random variation of solar radiation. This makes the method of calculating reliability evaluation indices of the SCG different from the conventional generator. After identifying the typical pattern of the SR probability distribution function(pdf) from SR actual data, this paper describes modelling, methodology and details process for reliability evaluation of the solar cell generators integrated with power system. Two test results indicate the viability of the proposed method.

Solar Radiation Estimation Technique Using Cloud Cover in Korea (운량에 의한 일사예측 기법)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.232-235
    • /
    • 2011
  • Radiation data are the best source of information for estimating average incident radiation. Lacking this or data from nearby locations of similar climate, it is possible to use empirical relationships to estimate radiation from days of cloudiness. It is necessary to estimate the regression coefficients in order to predict the daily global radiation on a horizontal surface. There fore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for 16 different areas over Korea by estimating the regression coefficients taking into account cloud cover. Particularly, the straight line regression model proposed shows reliable results for estimating the global radiation on a horizontal surface with monthly average deviation of-0.26 to +0.53% and each station annual average deviation of -1.61 to +1.7% from measured values.

  • PDF

Simulation and Analysis of Solar Radiation Change Resulted from Solar-sharing for Agricultural Solar Photovoltaic System (영농형 태양광 발전 솔라쉐어링에 따른 하부 일사량 변화의 해석 및 분석)

  • Lee, Sang-ik;Choi, Jin-yong;Sung, Seung-joon;Lee, Seung-jae;Lee, Jimin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.63-72
    • /
    • 2020
  • Solar-sharing, which is an agricultural photovoltaic system installing solar panels on the upper part of crop growing field, has especially drawn attention. Because paddy fields for cultivating crops are large flat areas, there have been various attempts to utilize solar energy for solar photovoltaic as well as growth of crops in agriculture. Solar-sharing was first proposed in Japan, and has been actively studied for optimization and practical uses. The domestic climate differs from the climate conditions in which the solar-sharing has been widely studied, therefore, it is required to develop the solar-sharing technology suitable for the domestic climate. In this study, a simulation model was developed to analyze the change of solar radiation resulted from the solar-sharing installation. Monthly solar illumination intensity and the change of illumination intensity according to the various conditions of solar panel installation were simulated. The results of monthly illumination analysis differed by altitude of the sun, which was related to season. In addition, it was analyzed that the monthly illumination decreased by up to 42% due to solar-sharing. Accordingly, it is recommended that solar-sharing should be installed as a way to maximize the efficiency of solar photovoltaic system while minimizing the decrease in solar radiation reaching the crops.

Thermal performance comparisons of the glass evacuated tube solar collectors of different absorber tubes (진공관형 태양열 집열기의 내부형상 변화에 따른 성능 비교)

  • Kim, Yong;Seo, Tae-Beom;Yun, Seong-Eun;Kim, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.595-598
    • /
    • 2005
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam radiation) on thermal performance of the collector are studied. However the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector. These effects are considered in this study experimentally and numerically the accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF