• Title/Summary/Keyword: Solar Radiation Model

Search Result 448, Processing Time 0.032 seconds

A Model Study on Development of Animal Wastes Treatment System for a Full-time Farm Household Raising Livestock (전업양축농가의 축분뇨처리시스템 개발을 위한 모형실험)

  • 최홍림;김현태;정영륜
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.16-26
    • /
    • 1993
  • A sundry system is one of popular systems for composting livestock manure, of which main honest is to utilize unlimited, clean, and free solar radiation. A sundry system with a composter of two horizontal screw-type concrete ducts at different height, was constructed and operated for three days for each test in May, 1993, to evaluate its composting performance. Four treatments of the mixture ratio of swine manure and saw dust (manure : sawdust= 1 : 1.25, 1 : 1, 1 : 0.7, 1 : 0.5) were implemented to evaluate the effect of the mixture ratio on degradation of the composting materials of a sundry system with a screw-type composter. Maximum temperature of the composting materials was over 5$0^{\circ}C$ at D1 or D2 (one or two days after operation starts) for each test. Mean C/N ratio and water contents of the materials were reduced by more than 15 and 20%, respectively. Microbial density of each test showed a typical variation with the lapse of the composting time. Mesophilic microorganism seemed to play more important role on degradation of the materials than thermophilic. A sundry system with a screw-type composter can be considered as a feasible system on basis of maturity data. The conclusion was completely reverse from that of Choi et at., although both adopted a sundry system. A further study is recommended to pursue the cause of better performance of the screw-type composter, whether it was due to affirmative weather or more efficient composter.

  • PDF

Statistical Analysis of Determining Optimal Monitoring Time Schedule for Crop Water Stress Index (CWSI) (작물 수분 스트레스 지수 산정을 위한 최적의 관측 간격과 시간에 대한 통계적 분석)

  • Choi, Yonghun;Kim, Minyoung;Oh, Woohyun;Cho, Junggun;Yun, Seokkyu;Lee, Sangbong;Kim, Youngjin;Jeon, Jonggil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.73-79
    • /
    • 2019
  • Continuous and tremendous data (canopy temperature and meteorological variables) are necessary to determine Crop Water Stress Index (CWSI). This study investigated the optimal monitoring time and interval of canopy temperature and meteorological variables (air temperature, relative humidity, solar radiation and wind speed) to determine CWSIs. The Nash-Sutcliffe model efficiency coefficient (NSE) was used to quantitatively describe the accuracy of sampling method depending upon various time intervals (t=5, 10, 15, 20, 30 and 60 minutes) and CWSIs per every minute were used as a reference. The NSE coefficient of wind speed was 0.516 at the sampling time of 60 minutes, while the ones of other meteorological variables and canopy temperature were greater than 0.8. The pattern of daily CWSIs increased from 8:00 am, reached the maximum value at 12:00 pm, then decreased after 2:00 pm. The statistical analysis showed that the data collection at 11:40 am produced the closest CWSI value to the daily average of CWSI, which indicates that just one time of measurement could be representative throughout the day. Overall, the findings of this study contributes to the economical and convenient method of quantifying CWSIs and irrigation management.

Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration (데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측)

  • Kim, Yong-min;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • In this study, the PV output and module temperature values were predicted using the Meteorological Agency data and compared with actual data, weather, solar radiation, ambient temperature, and wind speed. The forecast accuracy by weather was the lowest in the data on a clear day, which had the most data of the day when it was snowing or the sun was hit at dawn. The predicted accuracy of the module temperature and the amount of power generation according to the amount of insolation decreased as the amount of insolation increased, and the predicted accuracy according to the ambient temperature decreased as the module temperature increased as the ambient temperature increased and the amount of power generated lowered the ambient temperature. As for wind speed, the predicted accuracy decreased as the wind speed increased for both module temperature and power generation, but it was difficult to define the correlation because wind speed was insignificant than the influence of other weather conditions.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Performance Comparison of the Batch Filter Based on the Unscented Transformation and Other Batch Filters for Satellite Orbit Determination (인공위성 궤도결정을 위한 Unscented 변환 기반의 배치필터와 다른 배치필터들과의 성능비교)

  • Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2009
  • The main purpose of the current research is to introduce the alternative algorithm of the non-recursive batch filter based on the unscented transformation in which the linearization process is unnecessary. The presented algorithm is applied to the orbit determination of a low earth orbiting satellite and compared its results with those of the well-known Bayesian batch least squares estimation and the iterative UKF smoother (IUKS). The system dynamic equations consist of the Earth's geo-potential, the atmospheric drag, solar radiation pressure and the lunar/solar gravitational perturbations. The range, azimuth and elevation angles of the satellite measured from ground stations are used for orbit determination. The characteristics of the non recursive unscented batch filter are analyzed for various aspects, including accuracy of the determined orbit, sensitivity to the initial uncertainty, measurement noise and stability performance in a realistic dynamic system and measurement model. As a result, under large non-linear conditions, the presented non-recursive batch filter yields more accurate results than the other batch filters about 5% for initial uncertainty test and 12% for measurement noise test. Moreover, the presented filter exhibits better convergence reliability than the Bayesian least squares. Hence, it is concluded that the non-recursive batch filter based on the unscented transformation is effectively applicable for highly nonlinear batch estimation problems.

Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall (Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형)

  • Ro, Hee-Myong;Yoo, Sun-Ho;Han, Kyung-Hwa;Lee, Seung-Heon;Lee, Goon-Taek;Yun, Seok-In;Noh, Young-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

Wild Boar (Sus scrofa corranus Heude ) Habitat Modeling Using GIS and Logistic Regression (GIS와 로지스틱 회귀분석을 이용한 멧돼지 서식지 모형 개발)

  • 서창완;박종화
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.85-99
    • /
    • 2000
  • Accurate information on habitat distribution of protected fauna is essential for the habitat management of Korea, a country with very high development pressure. The objectives of this study were to develop a habitat suitability model of wild boar based on GIS and logistic regression, and to create habitat distribution map, and to prepare the basis for habitat management of our country s endangered and protected species. The modeling process of this restudyarch had following three steps. First, GIS database of environmental factors related to use and availability of wild boar habitat were built. Wild boar locations were collected by Radio-Telemetry and GPS. Second, environmental factors affecting the habitat use and availability of wild boars were identified through chi-square test. Third, habitat suitability model based on logistic regression were developed, and the validity of the model was tested. Finally , habitat assessment map was created by utilizing a rule-based approach. The results of the study were as folos. First , distinct difference in wild boar habitat use by season and habitat types were found, however, no difference in wild boar habiat use by season and habitat types were found , however, ho difference by sex and activity types were found. Second, it was found, through habitat availability analysis, that elevation , aspect , forest type, and forest age were significant natural environmental factors affecting wild boar hatibate selection, but the effects of slope, ridge/valley, water, and solar radiation could not be identified, Finally, the habitat at cutoff value of 0.5. The model validation showed that inside validation site had the classification accuracy of 73.07% for total habitat and 80.00% for cover habitat , and outside validation site had the classification accuracy of 75.00% for total habitat.

  • PDF

Correlation Analysis of Meteorological Factors for Wooden Building in Beopjusa and Seonamsa Temples by Statistical Model (통계적 모형을 통한 법주사와 선암사 목조건축물의 기상인자에 대한 상관성 분석)

  • Kim, Young Hee;Kim, Myoung Nam;Lim, Bo A;Lee, Jeung Min;Park, Ji Hee
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.387-396
    • /
    • 2018
  • Exposure to the natural environment can cause damage to domestic wooden cultural assets, such as temples. Deterioration is accelerated by biological damage and various environmental factors. In this study, meteorological factors were monitored by equipment installed at Beopjusa temple of Boeun province and Seonamsa temple of Suncheon province. A statistical model was applied to these data to predict the meteorological factors and to compare the predictive performance of each meteorological factor. The resulting correlation coefficient between air and dew point temperatures was highest, at 0.95, while the correlation coefficient for relative humidity had a moderate value(0.65) at both the Beopjusa and Seonamsa temples. Thus, a general linear model was found to be suitable for predicting air and dew point temperatures. An analysis of correlation between meteorological factors showed that there was strong positive correlation between air temperature and dew point temperature, and between solar radiation and evaporation at both sites. There was a weak positive correlation between air temperature and evaporation at Beopjusa temple. Wind speed was negatively correlated with both air temperature and relative humidity at Seonamsa temple. The wind speed at this location is higher than average in winter and lower than average in summer, and it was hypothesized that the low wind speed plays a role in reducing water evaporation in summer, when both air temperature and relative humidity are high. As a result, damage to the wooden buildings of Seonamsa temple is accelerated.

Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed - (Terra MODIS 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 - 용담댐 유역을 대상으로 -)

  • Lee, Yong-Gwan;Kim, Sang-Ho;Ahn, So-Ra;Choi, Min-Ha;Lim, Kwang-Suop;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.90-104
    • /
    • 2015
  • The purpose of this paper is to build a spatio-temporal evapotranspiration(ET) estimation model using Terra MODIS satellite image and by calibrating with the flux tower ET data from watershed. The fundamentals of spatial ET model, Surface Energy Balance Algorithm for Land(SEBAL) was adopted and modified to estimate the daily ET of Yongdam Dam watershed in South Korea. The daily Normalized Distribution Vegetation Index(NDVI), Albedo, and Land Surface Temperature(LST) from MODIS and the ground measured wind speed and solar radiation data were prepared for 2 years(2012-2013). The SEBAL was calibrated with the forest ET measured by Deokyusan flux tower in the study watershed. Among the model parameters, the important parameters were surface albedo, NDVI and surface roughness in order for momentum transport during calculation of sensible heat flux. As a result of the final calibration, the monthly averaged albedo and NDVI were used because the daily values showed big deviation with unrealistic change. The determination coefficient($R^2$) between SEBAL and flux data was 0.45. The spatial ET reflected the geographical characteristics showing the ET of lowland areas was higher than the highland ET.

Development of Artificial Intelligence Model for Predicting Citrus Sugar Content based on Meteorological Data (기상 데이터 기반 감귤 당도 예측 인공지능 모델 개발)

  • Seo, Dongmin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2021
  • Citrus quality is generally determined by its sugar content and acidity. In particular, sugar content is a very important factor because it determines the taste of citrus. Currently, the most commonly used method of measuring citrus sugar content in farms is a portable juiced sugar meter and a non-destructive sugar meter. This method can be easily measured by individuals, but the accuracy of the sugar content is inferior to that of the citrus NongHyup official machine. In particular, there is an error difference of 0.5 Brix or more, which is still insufficient for use in the field. Therefore, in this paper, we propose an AI model that predicts the citrus sugar content of unmeasured days within the error range of 0.5 Brix or less based on the previously collected citrus sugar content and meteorological data (average temperature, humidity, rainfall, solar radiation, and average wind speed). In addition, it was confirmed that the prediction model proposed through performance evaluation had an mean absolute error of 0.1154 for Seongsan area and 0.1983 for the Hawon area in Jeju Island. Lastly, the proposed model supports an error difference of less than 0.5 Brix and is a technology that supports predictive measurement, so it is expected that its usability will be highly progressive.