• Title/Summary/Keyword: Solar Power System

Search Result 1,695, Processing Time 0.031 seconds

A Multi-Harvested Self-Powered Sensor Node Circuit (다중 에너지 수확을 이용한 자가발전 센서노드 회로)

  • Seo, Yo-han;Lee, Myeong-han;Jung, Sung-hyun;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.585-588
    • /
    • 2014
  • This paper presents a self-powered sensor node circuit using photovoltaic and vibration energy harvesting. The harvested energy from a solar cell and a vibration device(PZT) is stored in a storage capacitor. The stored energy is managed by a PMU(Power Management Unit). In order to supply a stable voltage to the sensor node, an LDO(Low Drop Out Regulator) is used. The LDO drives a temperature sensor and a SAR ADC(Successive Approximate Register Analog-to-Digital Converter), and 10-bit digital output data corresponding to current temperature is obtained. The proposed circuit is designed in a 0.35um CMOS process, and the designed chip size including PADs is $1.1mm{\times}0.95mm$.

  • PDF

Analysis of Soiling for the Installation Direction of PV Module (태양전지 모듈의 설치방향에 따른 오염특성 분석)

  • Lee, Chung Geun;Shin, Woo Gyun;Lim, Jong Rok;Ju, Young Chul;Hwang, Hye Mi;Ko, Suk Whan;Chang, Hyo Sik;Kang, Gi Hwan
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.76-82
    • /
    • 2020
  • Soiling on the surface of a PV module reduces the amount of light reaching the solar cells, decreasing power performance. The performance of the PV module is generally restored after contaminants on the module surface are washed away by rain, but it accumulates at the bottom of the module owing to the thickness of the module frame, causing an output mismatch on the PV module. Since PV modules are usually installed horizontally or vertically outdoors, soiling can occur at the bottom of the PV module, depending on the installation direction due to external environmental factors. This paper is analyzed the output characteristics of a PV module considering its installation direction and the soiling area. The soiling was simulated to use transparent films with 5% transmittance, and the transmission film was attached to the bottom part of the PV module horizontally and vertically. When the soiling area was 33% of the string at the bottom of the PV module, the power output decreased similarly regardless of installation direction. However, when the soiling area was 66% of the string at the bottom of the PV module, it was confirmed that the output performance decreased sharply when installed vertically rather than horizontally.

Multi-Level Inverter Circuit Analysis and Weight Reduction Analysis to Stratospheric Drones (성층권 드론에 적용할 멀티레벨 인버터 회로 분석 및 경량화 분석)

  • Kwang-Bok Hwang;Hee-Mun Park;Hyang-Sig Jun;Jung-Hwan Lee;Jin-Hyun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.953-965
    • /
    • 2023
  • The stratospheric drones are developed to perform missions such as weather observation, communication relay, surveillance, and reconnaissance at 18km to 20km, where climate change is minimal and there is no worry about a collision with aircraft. It uses solar panels for daytime flights and energy stored in batteries for night flights, providing many advantages over existing satellites. The electrical and power systems essential for stratospheric drone flight must ensure reliability, efficiency, and lightness by selecting the optimal circuit topology. Therefore, it is necessary to analyze the circuit topology of various types of multi-level inverters with high redundancy that can ensure the reliability and efficiency of the motor driving power required for stable long-term flight of stratospheric drones. By quantifying the switch element voltage drop and the number and weight of inverter components for each topology, we evaluate efficiency and lightness and propose the most suitable circuit topology for stratospheric drones.

MSC(Multi-Spectral Camera) 열제어 시스템 소개

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Jang, Young-Jun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • As a unique payload of Komsat-2, MSC, comprising EOS(Electro-Optical Sub-system), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Sub-system), is supposed to take pictures of one panchromatic and 4 multi-spectral image between wavelength 450mm~900mm, and is being under final Satellite I&T. It will perform the earth remote sensing with applications such as acquisition of high resolution images, surveillance of large scale disasters and its countermeasure, survey of natural resources, etc.. Under the hostile influence of the extreme space environmental conditions due to deep space and direct solar flux, the thermal design is especially of major importance in designing a payload. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy source on the spacecraft. This paper describes details of thermal control system for MSC.

  • PDF

The Signal-to-Noise Ratio Enhancement of the Satellite Electro-Optical Imager using Noise Analysis Methods (영상센서신호의 잡음분석을 이용한 위성용 전자광학탑재체의 신호대잡음비 개선 방법)

  • Park, Jong-Euk;Lee, Kijun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2017
  • The Satellite Electro-Optic Payload System needsspecial requirements with the conditions of limited power consumption and the space environment of solar radiation. The acquired image quality should be mainly depend on the GSD (Ground Sampled Distance), SNR (Signal to Noise Ratio), and MTF (Modulation Transfer Function). On the well-manufactured sensor level, the thermal noise is removed on ASP (Analog Signal Processing) using the CDS (Corrective Double Sampling); the noise signal from the image sensor can be reduced from the offset signals based on the pre-pixels and the dark-pixels. The non-uniformity shall be corrected with gain, offset, and correction parameter of the image sensor pixel characteristic on the sensor control system. This paper describes the SNR enhancement method of the satellite EOS payload using the mentioned noise remove processes on the system design and operation, which is verified by tests and simulations.

From appropriate "technology" to appropriate "socio-technical system" : International development cooperation and social innovation in energy field (적정 '기술'에서 적정한 '사회기술 시스템'으로: 에너지 관련 기술 분야의 국제개발협력과 사회적 혁신)

  • Han, Jae Kak;Jo, Bo Young;Lee, Jin Woo
    • Journal of Science and Technology Studies
    • /
    • v.13 no.2
    • /
    • pp.1-35
    • /
    • 2013
  • The aim of this article is to criticize the discourses and practices of the appropriate technology for international development cooperation in Korea which focus narrowly on the technologies and are oriented to the providers of technologies. To present an alternative, we will discuss the appropriate technology by the insights from 'socio-technical system' studies which underline not only technological side but also the social, institutional and user's side, and analyze the interactions between them. This research deals with several cases mainly regarding small scale's renewable energy from Laos, Thailand, Bangladesh, Mongolia and Nepal. We put out some suggestions to improve the discourse and practices of appropriate technology in field of international cooperation by Korea.

  • PDF

Over Discharging Protection system of Leak Acid Battery for Automatic Water Sanitizer Device (소독약 자동 주입장치용 납축전지의 과 방전 방지시스템)

  • Bae, Cherl-O;Park, Young-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.161-165
    • /
    • 2012
  • It is one of the most important to protect the battery over charging for stable use and to extend the life of battery which occurs with repeated charging and discharging. Various research have been studied to know the state of health, and in this paper the terminal voltage of battery is measured to calculate the state of charge simply. The circuit used comparator is designed and built not to fall under the specific voltage of battery. The designed circuit board is attached to the automatic water sanitizer device with a solar power system. The system is located in the water tank where there is not water and electric service, and confirmed that the state of working is good.

A Study on the Step-up DC-DC Converter for PV System Application Under Variable Input Voltage Condition (가변 입력 전압 조건하에서 태양광 시스템 적용을 위한 승압형 DC-DC 컨버터 연구)

  • Ju-Yeop Lee;Se-Cheon Oh;Il-Hyeong Jo;Ye-Jin Kim;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.677-684
    • /
    • 2024
  • In this paper, the design method of a step-up DC-DC converter based on PWM control was studied for solar power system application. The operating principle of the switching mode step-up type DC-DC converter was analyzed and the basic design method was studied. For photovoltaic system application, an output voltage feedback control algorithm based on PWM control was developed to enable the converter's output voltage to follow the target voltage under variable input conditions. As a procedure to verify the effectiveness of the proposed algorithm, a prototype of a step-up DC-DC converter with a single feedback output voltage was designed and made by boosting the input voltage DC 10V to DC 30V. In experiments with prototypes, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage. In the performance evaluation test, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage by showing an error rate within 1 [%] of the reference voltage.

Diagnosis of Scoping and Type of Review on the Marine Environmental Impact Assessment for Ocean Energy Development Project (해양에너지개발사업 환경영향평가 검토유형 및 중점평가사항 진단)

  • Lee, Dae In;Kim, Gui Young;Tac, Dae Ho;Yi, Yong Min;Choi, Jin Hyu;Kim, Hye Jin;Lee, Ji Hye;Yoon, Sung Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.179-188
    • /
    • 2015
  • This study reviewed the type of the project and developmental plan related to ocean energy development in the coastal land boundaries and the ocean, and suggested the efficient scoping method through the diagnosis of the key items of environmental impact assessment (EIA) in the coastal area. The major projects are the construction of tidal power plant, tidal current power plant, and offshore wind power plant in the public water, and also those are the construction of solar power plants in the coastal land boundaries. While the project plans on a large scale such as the construction of tidal power plant, it is important to consider both property of usefulness of the designated areas and harmony analysis with marine space availability based on the adequacy of the site selection and relevance of plan with the master plan for reclamation and strategic environmental assessment (SEA). And also it needs to be considered the careful checkup on the EIA checklist referring to the type of project, effective post-monitoring, and suggestion of mitigating methods to minimize the environmental impacts during the stage of actual environmental impact assessment. Introduction of a system of integrated marine environmental impact assessment should be considered for reasonable and effective manage to developmental projects on the marine spatial area.

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF