• 제목/요약/키워드: Solar Power Generation Facilities

검색결과 76건 처리시간 0.023초

환경에너지 종합타운 조성 타당성에 관한 연구 (Study on Pertinence for Environmental Energy Complex Town Construction)

  • 김영준;이종연;강용태
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.164-171
    • /
    • 2011
  • The objectives of this study are to propose a suitable treatment facility for waste energy recovery after analyzing the waste generation and disposal situation in Jejudo, to establish the plan to install the solar photovoltaics and wind power plant considering the site conditions and finally to establish the environmental energy town plan in conjunction with the existing facilities. The food waste biogas plant is selected as the treatment capacity of 200 ton/day. It is estimated that the biogas plant will produce the electricity of 7,594 MWh per year, which will reduce the greenhouse gas of 4,177 $tCO_2$ per year. The solar photovoltaics and wind power plant will produce the electricity of 13,410 MWh per year, which will reduce the greenhouse gas of 7,375 $tCO_2$ per year. Environmental energy town will give us the reduction of operating cost by centralized treatment of residues and byproducts, and by efficient utilization of produced energy.

에너지 생산량 소비량 예측을 통한 효율적인 계통 독립형 ESS 제어 시스템 (Efficient Grid-Independent ESS Control System by Prediction of Energy Production Consumption)

  • 주종율;오재철
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.155-160
    • /
    • 2019
  • 본 논문에서는 신재생에너지와 농업ICT를 활용한 시설농업용 제어와 에너지생산량과 소비량 예측을 통해 효율적인 계통 독립형 ESS제어시스템을 제안한다. 제안된 시스템은 전력계통 정밀 위상 및 데이터를 시각화하여 유지보수 및 모니터링을 수행할 수 있는 통합 관리 시스템으로 장애 발생 시 자동으로 이에 대해 대처하고 데이터 수집, 처리, 제어가 가능하며, 태양광발전의 전력 발전과 설치된 설비들의 소비 패턴, 설비들의 동작 트랜드를 분석, 기상청 OpenAPI를 활용한 에너지 생산량 소비량 예측을 통해 최적의 에너지 운영 방법을 제시함으로써 불필요한 에너지 소비를 줄이고 운영비용을 절감할 수 있다.

이기종 태양광 설비 지원을 위한 범용 RMC 게이트웨이 개발 (Development of General-Purpose Remote Maintenance Controller Gateway for Multi-Modal Photovoltaic Equipment)

  • 임수창;홍석훈;박철영;송법성;김종찬
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1307-1317
    • /
    • 2020
  • In recent years, the PV plant is gradually increasing in korea and has begun to focus on PV system O&M(Operation and Management). The legacy PV system can hardly be gathering realtime information. That is why it is difficult for the facility to respond immediately to situations in which problems arise. This leads to economic losses due to reduced power generation. In this study, we implemented an RMC(Remote Maintenance Control) gateway that supports multi-area equipment(inverters, junction boxes, switchboards, environmental sensors) that are not limited to specific manufacturers. It provides a function to visualize the collected data. Users can easily check the power generation and operation status of PV system equipment. In the future, we will develop an algorithm capable of analyzing beta factors that cause equipment performance degradation, parts aging, and deterioration using data collected from facilities. We intend to use this algorithm as a fundamental technology for O&M by transplanting it to the RMC gateway.

단독주택 태양광 발전과 냉방수요를 반영한 전력 최적운용 전략 연구 (Study on Optimal Control Algorithm of Electricity Use in a Single Family House Model Reflecting PV Power Generation and Cooling Demand)

  • 서정아;신영기;이경호
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.381-386
    • /
    • 2016
  • An optimization algorithm is developed based on a simulation case of a single family house model equipped with PV arrays. To increase the nationwide use of PV power generation facilities, a market-competitive electricity price needs to be introduced, which is determined based on the time of use. In this study, quadratic programming optimization was applied to minimize the electricity bill while maintaining the indoor temperature within allowable error bounds. For optimization, it is assumed that the weather and electricity demand are predicted. An EnergyPlus-based house model was approximated by using an equivalent RC circuit model for application as a linear constraint to the optimization. Based on the RC model, model predictive control was applied to the management of the cooling load and electricity for the first week of August. The result shows that more than 25% of electricity consumed for cooling can be saved by allowing excursions of temperature error within an affordable range. In addition, profit can be made by reselling electricity to the main grid energy supplier during peak hours.

소규모 분산자원의 효율적 운용을 위한 가상발전소 플랫폼 개발 (A study on the development of a virtual power plant platform for the Efficient operation of small distributed resources)

  • 김희철;홍호표
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.365-371
    • /
    • 2021
  • 본 연구에서 고찰되는 가상발전소(VPP; Virtual Power Plant) 솔루션 플랫폼은 전력회사가 발전·송전설비 등의 건설에 소요되는 비용과 이와 관련된 투자리스크를 최소화 한다. 또한, 소비자의 전력 수요를 충족할 수 있도록 수요대응(DR; Demand Response) 프로그램운영 기능을 포함시켜 VPP도입으로 발전 및 송·배전부문에 대한 대규모 설비투자 없이 현존하는 발전기와 DR 프로그램 등을 통해서 소비자의 부하변화에 실시간으로 대처하여 보다 친환경적이고 효율적인 전력공급이 가능하도록 한다. 태양광 및 ESS 연동 장치에 통신 Device를 연동하기 위해서는 Device 장치와 Edge System간 제어·상태에서 데이터를 전달하고 IoT Device 및 연동 플랫폼 개발(OneM2M)이 필요하다.

하수처리시설의 에너지자립화 및 경제적 효과분석 (Study on Energy Independence Plan and Economic Effects for Sewage Treatment Plant)

  • 박기학;이호식;하준수;김극태;임채승
    • 한국물환경학회지
    • /
    • 제37권2호
    • /
    • pp.128-136
    • /
    • 2021
  • It is generally known that a wastewater treatment plant (WWTP) consumes immense energy even if it can produce energy. With an aim to increase the energy independence rate of WWTP from 3.5% in 2010 to 50% in 2030, the Korean government has invested enormous research funds. In this study, cost-effective operating alternatives were investigated by analyzing the energy efficiency and economic feasibility for biogas and power generation using new and renewable energy. Based on the US EPA Energy Conservation Measures and Korea ESCO projects, energy production and independence rate were also analyzed. The main energy consumption equipment in WWTP is the blower for aeration, discharge pump for effluent, and pump for influent. Considering the processes of WWTP, the specific energy consumption rate of the process using media and MBR was the lowest (0.549 kWh/㎥) and the highest (1.427 kWh/㎥), respectively. Energy-saving by enhancing anaerobic digester efficiency was turned out to be efficient when in conjunction with stable wastewater treatment. The result of economic analysis (B/C ratio) was 2.5 for digestive gas power generation, 0.86 for small hydropower, 0.49 for solar energy, and 0.15 for wind energy, respectively. Furthermore, it was observed that the energy independence rate could be enhanced by installing energy production facilities such as solar and small hydropower and reducing energy consumption via the replacement of high-efficiency operating.

다중 물 분사 노즐이 장착된 감온밸브의 해석 연구 (An Analysis Study on Desuperheater valve attachment on Multi Water Spray Nozzles)

  • 이덕구;조행훈;조남철;이채문
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2009
  • The generation of electric power and plant facilities have been attempting to improve energy efficiency with many efforts as those being basis of our country's economy. In particular, the CHP(Combined Heat Power plant) system, is producing the electricity and process steam, has generally been using for the cogeneration plants. When CHP system operates, the steam has to maintain the high temperature and high pressure in order to have high efficiency of electric power production as much as possible. In addition, the exhausted steam from the turbine has to reform proper temperature to use the needed process. The major purpose of desuperheater is that the superheated steam changes into the saturated steam because it is more efficient and suitable for using the process, furthermore, it is more convenient and stable regarding the process temperature control. The design of the desuperheater obtained through the experiment and preceding analysis. This paper is verified by analysis that water spray nozzle(${\Phi}$=28mm) shows the best ability under the real power plant condition.

  • PDF

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

주파수 분석을 이용한 태양광 설비의 아크 검출 기법 (Arc Detection Method of Photovoltaic System using Frequency Analysis)

  • 김상규;지평식
    • 전기학회논문지P
    • /
    • 제66권3호
    • /
    • pp.144-149
    • /
    • 2017
  • There is a little research on DC arc detection when compared to a large number of literature and patents on AC arc detection. However, as DC energy sources such as photovoltaic power generation facilities and fuel cells are introduced, research on DC arc has become as important as AC arc detection in terms of circuit protection and system reliability enhancement. In this paper, we have developed an arc detection method for photovoltaic system using frequency analysis. Through various experiments, it was confirmed that the proposed method effectively detects the arc.

NPV-BASED 3D ARRAY DESIGN SYSTEM OF ROOF-TOP PHOTOVOLTAICS

  • Kim Se-Jong;Cho Dong-Hyun;Park Hyung-Jin;Yoon Hee-Ro;Koo Kyo-Jin
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.300-303
    • /
    • 2013
  • On BIPV systems, especially roof-top PV systems, the power generation is easier to be reduced due to the shades of facilities nearby, or roof itself. To secure profitability of roof-top PV systems, the optimal design of solar arrays through the precise shading analysis is an important item of design considerations. In this paper, an optimization system for array design of roof-top PVs is to be developed using three-dimensional Geospatial Information System(GIS). The profitability of income and expense is considered through the shading analysis of entire roofs. By applying the system to project for validation, the adequacy and the improvement of NPV of the system were verified compared to expert's design. The system has significance by reason that PV modules are placed through rules established with expert knowledge and geometric rules were applied to reflect the constructability and maintainability.

  • PDF