• Title/Summary/Keyword: Solar Photovoltaic Power Generation

Search Result 452, Processing Time 0.024 seconds

Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor (III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석)

  • Ko, Jae-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

Durability Evaluation Study of Re-manufactured Photovoltaic Modules (재 제조 태양광모듈의 내구성능 평가 연구)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.

Utility scale solar power development in Nepal

  • Adhikari, Rashmi
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.86-91
    • /
    • 2020
  • Nepal is among the richest in terms of water resource availability and it is one of the most important natural resources of the country. Currently, 72% of the population is electrified through the national grid system. The power generation mix into the grid is hydro dominated with minor shares generated from solar and thermal (accounts for less than 1%). To achieve sustainable development in the power sector it is essential to diversify power generation mix into the grid. Knowing the facts, the government has a plan to achieve a 5-10% share of power generation from solar and mix it into the grid system. Solar is the second most abundant, prominent and free source of renewable in the context of Nepal. This study mainly focuses on the grid-connected solar system, its importance, present status, government efforts, and its need. It is based on the review of literature, news published in national newspaper online news and international organization's report.

Characteristics Analysis of Proto-type Microconverter for Power Output Compensation of Photovoltaic Modules (태양광 모듈 출력 보상을 위한 마이크로컨버터 시제품 동작 특성 분석)

  • Jihyun, Kim;Ju-Hee, Kim;Jeongjun, Lee;Jongsung, Park;Changheon, Kim
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.133-137
    • /
    • 2022
  • The economic feasibility of a photovoltaic (PV) system is greatly influenced by the initial investment cost for system installation. Also, electricity generation by PV system is highly important. The profits competitiveness of PV system will be maximized through intelligent operation and maintenance (O&M). Here, we developed a microconverter which can maximize electricity generation from PV modules by tracking the maximum power point of PV modules, and help efficient O&M. Also, the microconverter mitigates current mismatch caused by shading, hence maximize power generation. The microconverters were installed PV modules and demonstrated through the field tests. Power outputs such as voltage, string current were measured with variuos weather environments and partial shadings. We found that PV modules with the microconvertors shows 12.05% higher power generation compared to the reference PV modules.

A Study on the Characteristics of the Combined Generation System by Solar and Wind Energy with Power Storage Apparatus for the Geographical Features

  • Lim, Jung-Yeol;Kang, Byeong-bok;Cha, In-Su
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • The development of the solar and the wind energy is necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently MW Class power generation system has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic and wind power was suggested. It combines wind power energy and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with everchanging weather condition, power storage apparatus that uses elastic energy of spiral spring to combined generation system was also added for the present study.

Hybrid System of Solar Cell and Fuel Cell (태양광발전과 연료전지의 하이브리드 시스템)

  • Hwang, Jun-Won;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.568-573
    • /
    • 2009
  • Because of environmental crisis, researchers are seeking and developing a new, clean, safe and renewable energy. Solar cell energy and fuel cell energy have inestimable development potential. The paper introduces hybrid photovoltaic-fuel cell generation systems supplying a remote power load and hybrid system of solar cell and fuel cell considering the advantages of stable and sustainable energy from the economic point of view. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land us, is able to alleviate the heavy burden for large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime $CO_2$ emissions. In this paper shows the I-V characteristics of the solar module which are dependent on the power of the halogen lamp and the I-V characteristics of fuel cells which are connected in parallel. Also, it shows efficiency of the hybrid system.

Design and Characteristics Analysis of a 3 kW Grid-connected Photovoltaic Power Generation System (3 kW 계통연계형 태양광 발전시스템의 설계 및 실증운전특성 분석)

  • Hwang, I.H.;Jeong, S.J.;Ahn, K.S.;Lim, H.C.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 1998
  • This paper describes a design method and characteristics analysis of the 3 kW grid-connected photovoltaic power generation system to establish the basic application technology of photovoltaic systems. The design specification of a 3 kW photovoltaic power generation system including a DC/AC inverter is suggested to investigate the system performance for grid connection. The results of the demonstration test from February to October show that the system with utilization rate up to 17% has reliable operation characteristics and is useful for peak-shaving of utility power.

  • PDF

The long-term operating evaluation of the grid connected photovoltaic system (중규모 태양광발전시스템 장기 실증운전 평가)

  • Kim, Eui-Hwan;Ahn, Kyo-Sang;Lim, Hee-Chun
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.14-19
    • /
    • 2009
  • The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 10 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 41.9 MWh in 2008. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 9.6% in 2008. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 10 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

The Development of Photovoltaic Resources Map Concerning Topographical Effect on Gangwon Region (지형효과를 고려한 강원지역의 태양광 발전지도 개발)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.37-46
    • /
    • 2011
  • The GWNU (Gangnung-Wonju national university) solar radiation model was developed with radiative transfer theory by Iqbal and it is applied the NREL (National Research Energy Laboratory). Input data were collected and accomplished from the model prediction data from RDAPS (Regional Data Assimilated Prediction Model), satellite data and ground observations. And GWNU solar model calculates not only horizontal surface but also complicated terrain surface. Also, We collected the statistical data related on photovoltaic power generation of the Korean Peninsula and analyzed about photovoltaic power efficiency of the Gangwon region. Finally, the solar energy resource and photovoltaic generation possibility map established up with 4 km, 1 km and 180 m resolution on Gangwon region based on actual equipment from Shinan solar plant,statistical data for photovoltaic and complicated topographical effect.