• 제목/요약/키워드: Solar PV Generation

검색결과 331건 처리시간 0.029초

아파트 입면형 PV적용방식의 발전성능효과해석 연구 (A simulation analysis of PV application method effect on electric power performance in an apartment wall facade)

  • 서정훈;허정호
    • 한국태양에너지학회 논문집
    • /
    • 제26권3호
    • /
    • pp.25-32
    • /
    • 2006
  • The objective of this study is to investigate the effect of building integrated PV application method on power generation. PV modules were integrated to a hypothetical apartment building facade in Seoul, Korea. Three different design options of PV panel mounted on exterior wall were developed for the analysis of cooling effects through ventilation. Numerical simulations using TRNSYS coupled with COMIS were executed to evaluate the design options. Their facade configurations are such as vertically installed PV panels with or without air gap between PV rear surface and exterior wall surface, and the tilted PV panels attached to the exterior wall at an angle of to the horizontal. Parametric results show that there is little difference regardless of the air 9ap width between PV rear surface and exterior wall surface. Special strategies which could effectively cool a PV panel to increase the electric power are required if we prefer to a vertical facade configuration in a building integrated PV installation. Consequently, it is expected that there is no reason for architect to install vertically PV panels with air gap unless active strategies are considered.

기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발 (Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning)

  • 이승민;이우진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권10호
    • /
    • pp.353-360
    • /
    • 2016
  • 여러 개의 태양전지들이 붙어 있는 태양광 패널을 이용하여 전력을 생산하는 태양광 발전은 최근 신재생 에너지 기술로 빠르게 성장하고 있는 분야이다. 하지만 태양광발전의 단점 중 하나인 불규칙한 전력 생산문제로 인해, 장비 및 패널 결함에 빠르게 대응하지 못하는 문제가 발생한다. 이 연구에서는 다양한 기후데이터와 패널 정보를 이용하여 태양광발전량 예측 방법들을 비교하여 최적의 예측 알고리즘을 평가하고 이를 기반으로 태양광발전소 결함 검출 시스템을 개발하여 국내 태양광 발전소에 적용한 사례를 기술한다.

평지붕 설치 태양광시스템의 표면형태 조사·분석 (Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System)

  • 이응직
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

실제 날씨를 고려한 PV-MPPT 제어기의 최적 주기와 변량전압 (Optimum Control Period and Perturbation Voltage for PV-MPPT Controller Considering Real Wether Condition)

  • 류단비;김용중;김효성
    • 전력전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2020
  • Solar power generation systems require maximum power point tracking (MPPT) control to operate PV panels at their maximum power point (MPP). Most conventional MPPT algorithms are based on the slope-tracking concept. A typical slope-tracking method is the perturb and observe (P&O) algorithm. The P&O algorithm measures the current and voltage of a PV panel to find the operating point of the voltage at which the calculated power is maximized. However, the measurement error of the sensor causes irregularity in the calculation of the generated power and voltage control. This irregularity leads to the problem of not finding the correct MPP operating point. In this work, the power output of a PV panel based on the P&O algorithm is simulated by considering the insolation profiles from typical clear and cloudy weather conditions and the errors of current and voltage sensors. Simulation analysis suggests the optimal control period and perturbation voltage of MPPT to maximize its target efficiency under real weather conditions with sensor tolerance.

PV연계형 ESS의 설치 규모에 따른 수익영향 (Profitability Analysis of ESS with PV Generation)

  • 김창수;최상봉
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.86-93
    • /
    • 2020
  • The investment in solar and wind generation is rapidly increasing with government's renewable expansion policy and Renewable Portfolio Standard (RPS). Since the large penetration of solar and wind generation increases the variability and uncertainty of supply and demand balance in power system, the government is pursuing the policy of supplying energy storage system (ESS) linked to renewable energy. ESS contributes to the ease of transmission and distribution grid by shifting PV generation from daytime to evening hours. Recently, the declining market price of REC as ESS incentive, policies to cut down incentives and limited ESS storage due to fire events lead to the aggravation of long-term profitability, thus working as a barrier of ESS spreading. In this study, the factors affecting the profit of ESS are analyzed and brief indicators are derived. Based on the indicators, the profit changes are analyzed considering the variation of REC market price and REC incentive weights. Based on the profit change with respect to the increase of ESS capacity, economical ESS installation capacity is suggested.

A Case Study of Resolving Conflict in Energy Infrastructure Siting by the Solar PV Project

  • Lee, Jonghwan;Shin, Dong-hwi;Han, Soohee;Roh, Jae Hyung
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.79-85
    • /
    • 2020
  • The growing demand for new energy infrastructure has often been encountered with the difficulties of siting in power plants and electric transmission lines. Siting such large-scale and complex facilities produces so many-sided issues that it is highly necessary to develop an approach to resolving the related problems and conflicts. This paper introduces how the stakeholders have handled the issues and resolved conflicts with residents opposed the construction of 765 kV transmission line. The solar photovoltaic power generation, called "Hee-Mang Sunlight Power project", is used for persuading residents to agree with constructing high-voltage transmission line and sharing benefits. It is considered how the project performance such as generation output and resident's profits is and proposed what the project should be revised and supplement. The project is shown that the intractable spiting in energy systems can be smartly resolved with cost-effective institutional solutions instead of relatively expensive technical ones.

직류 커패시터 노후화에 따른 PV 인버터 동작 (PV Inverter Operation according to DC Capacitor Aging)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.149-155
    • /
    • 2023
  • 태양광 발전은 신재생에너지 중 가장 친숙한 발전시설로 약 10여 년 전부터 보급이 확대되기 시작해 현재 시점에서는 시스템의 유지보수관리에 대한 해결 및 기술에 관한 관심이 높아지고 있다. 특히 태양광 발전시스템의 이상 유무 및 부품 교체시기 그리고 시스템의 종합효율을 최대화할 수 있는 대책이 필요하다. 태양광발전시스템의 한 요소인 PV 인버터는 전력용 스위칭 소자에 의존하는 전력변환 시스템으로 DC/DC 컨버터 및 DC-AC 인버터 구성에 따른 직류(DC-Link) 커패시터가 사용된다. 이러한 직류 커패시터 역시 장시간 사용에 따른 노후 및 열화로 인해 PV 인버터의 발전량 감소와 전력손실 그리고 고조파(THD, 교류출력전류 종합왜형률) 증가로 신재생에너지 설비를 통한 계통 안전성(Safety)에 영향을 미치는 요인으로 분석할 수 있다. 따라서 본 논문에서는 태양광발전시스템에서 현재 운영 중인 직류 커패시터 용량 상태에 따른 PV 인버터 동작 특성을 고찰함과 동시에 신재생에너지 설비의 안전성 및 신뢰성을 확보할 수 있도록 연구내용을 제안하였다.

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

단축식 태양광 추적장치의 설계와 발전량 증대기술 (Technology of single-axis solar tracking system and power generation increase)

  • 이재진;이교범;정규원
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.212-217
    • /
    • 2020
  • 태양광 발전 시스템은 태양광 패널을 통해 발전된 전력을 계통연계를 통해 전송하는 종합 시스템이다. 발전량을 증대시키는 기술로써 태양광 입사각을 변화시켜 발전량을 증대시키는 추적식 태양광 발전장치 기술이 있다. 본 논문은 입사각을 변화시켜 발전량을 증대시키는 단축 추적식 태양광 발전장치의 구조물과 제어에 관한 연구이다. 핵심 내용은 태양광 구조물이 남북축을 중심으로 동서 방향으로 축회전하도록 구성한 단축 제어장치 및 기술이다. 일출로부터 일몰까지 동서방향으로 태양을 추종하는 태양광 구조물은 구조적 안정성과 태양광 추종 제어 성능 확보가 필요하다. 단축 추적 발전장치는 최대 25% 이상의 발전량 증대를 기대할 수 있다.