• Title/Summary/Keyword: Solar Module

Search Result 739, Processing Time 0.027 seconds

Fresnel lens-DCPC-concentrating solar cell-heat sink type solar module (Fresnel 렌즈-DCPC-집광형태양전지-방열판형 solar module에 관한 연구)

  • 송진수
    • 전기의세계
    • /
    • v.30 no.10
    • /
    • pp.655-661
    • /
    • 1981
  • The concentrating solar module with high concentration ratio(320)has been studied.in this paper. The solar module was composed of the EMVJ solar cell, (Fresnel Lens-DCPC)concentrator and heat sink, and was measured by using the PASTF system. The experimental result and the result analysis for the individual item of the module were as f ollows; (1) The conversion efficiency of the module was 8.3%. (2) The optical efficiency of the concentrator was 46.5% (DCPC; 84.8%, Fresnel Lens; 54.8%). (3) The thermal loss of the solar cell was 4.9%. And methods for the further improvement of the concentrating solar module efficiency have been suggested.

  • PDF

Analysis on thermal & electrical characteristics variation of PV module with damaged bypass diodes (PV 모듈 내 바이패스 다이오드 손상에 의한 열적 전기적 특성 변화 분석)

  • Shin, Woo-Gyun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • PV module is conventionally connected in series with some solar cell to adjust the output of module. Some bypass diodes in module are installed to prevent module from hot spot and mismatch power loss. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we study the thermal and electrical characteristics change of module with damaged bypass diode to easily find module with damaged bypass diode in photovoltaic system consisting of many modules. Firstly, the temperature change of bypass diode is measured according to forward and reverse bias current flowing through bypass diode. The maximum surface temperature of damaged bypass diode applied reverse bias is higher than that of normal bypass diode despite flowing equal current. Also, the output change of module with and without damaged bypass diode is observed. The output of module with damaged bypass diode is proportionally reduced by the total number of connected solar cells per one bypass diode. Lastly, the distribution temperature of module with damaged bypass diode is confirmed by IR camera. Temperature of all solar cells connected with damaged bypass diode rises and even hot spot of some solar cells is observed. We confirm that damaged bypass diodes in module lead to power drop of module, temperature rise of module and temperature rise of bypass diode. Those results are used to find module with a damaged bypass diode in system.

Performance Measurement Method of Several Types of Photovoltaic Module Depending on Efficiency (고효율 태양전지모듈의 성능측정 방법)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • To guarantee more exact maximum power of solar cell module, it is absolutely required to have performance characteristics of various solar cells. Today, there are many types of solar simulator for large area measurement. But it is very opaque how to select the best one for various solar cell module like crystalline silicon solar cell, high efficiency solar cell, amorphous silicon thin film solar cell, CdTe and CIGS solar cell module. So, in this paper 4 types of photovoltaic module were selected to compare the electrical characteristics by changing light pulse duration time and voltage scan direction. Light pulse duration time was varied from 10msec to 800msec. And two types of voltage scan directions, Voc->Isc and Isc->Voc were selected. From this results, optimum measuring condition was suggested and electrical variation was analysed for each types of solar cell module. The detail description is specified as the following paper.

Test of Fault Detection to Solar-Light Module Using UAV Based Thermal Infrared Camera (UAV 기반 열적외선 카메라를 이용한 태양광 모듈 고장진단 실험)

  • LEE, Geun-Sang;LEE, Jong-Jo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.106-117
    • /
    • 2016
  • Recently, solar power plants have spread widely as part of the transition to greater environmental protection and renewable energy. Therefore, regular solar plant inspection is necessary to efficiently manage solar-light modules. This study implemented a test that can detect solar-light module faults using an UAV based thermal infrared camera and GIS spatial analysis. First, images were taken using fixed UAV and an RGB camera, then orthomosaic images were created using Pix4D SW. We constructed solar-light module layers from the orthomosaic images and inputted the module layer code. Rubber covers were installed in the solar-light module to detect solar-light module faults. The mean temperature of each solar-light module can be calculated using the Zonalmean function based on temperature information from the UAV thermal camera and solar-light module layer. Finally, locations of solar-light modules of more than $37^{\circ}C$ and those with rubber covers can be extracted automatically using GIS spatial analysis and analyzed specifically using the solar-light module's identifying code.

Characteristics variation of PV module by damaged bypass diodes

  • Sin, U-Gyun;Jeong, Tae-Hui;Go, Seok-Hwan;Gang, Gi-Hwan;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.424.2-424.2
    • /
    • 2016
  • Solar cell converts light energy to electric energy. But a solar cell generates low power, PV module is fabricated by connected in series with dozens of solar cell. Owing to solar cell connected in series, power of PV module is influenced by shading or mismatch power of solar cells. To prevent power loss of PV module by shading or mismatch current, Bypass diodes are installed in PV module. Bypass diode operating reverse voltage by shading or mismatch power of solar cells bypass mismatch current. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we confirm characteristics variation of PV module with damaged bypass diode. As a result, power of PV module with damaged bypass diode is reduced and Temperature of that is increased.

  • PDF

Prediction of temperature distribution in PV module using finite element method (유한 요소 해석 프로그램을 이용한 모듈 내 온도 분포 예측)

  • Park, Young-Eun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Kim, Jun-Tae;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.65-72
    • /
    • 2016
  • PV module is installed in various outdoor conditions such as solar irradiation, ambient temperature, wind speed and etc. Increase in solar cell temperature within PV module aggravates the behaviour and durability of PV module. It is difficult to measure temperature among respective PV module components during PV module operating, because the temperature within PV module depends on thermal characteristics of PV module components materials as well as operating conditions such as irradiation, outdoor temperature, wind etc. In this paper, simulation by using finite element method is conducted to predict the temperature of each components within PV module installed to outdoor circumstance. PV module structure based on conventional crystalline Si module is designed and the measured values of thickness and thermal parameters of component materials are used. The validation of simulation model is confirmed by comparing the calculated results with the measured temperatures data of PV module. The simulation model is also applied to estimate the thermal radiation of PV module by front glass and back sheet.

Experimental Analysis of Ventilation Effect on the Performance of Building-Integrated PV Solar Roof (건물통합형 PV Solar Roof의 통풍효과 실험분석)

  • Kim, Jin-Hee;Lee, Kang-rock;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2006
  • The integration of PV modules into building facades or roof could raise PV module temperature that results in the reduction of electrical power generation. Lowering operating temperature of PV module is important in this respect, and PV module temperature should be considered more accurately, for building-integrated PV(BIPV) systems in predicting their performance. This paper describes a BIPV solar roof design and verifies its performance through experiment In relation to the effect of ventilation in space between PV module and roof surface. The results showed that the ventilation in the space had a positive effect in lowering the module temperature of the BIPV solar roof that enhanced the performance of its electricity generation.

A Study on the Optimum Selection of Placing Photovoltaic Module In the Metropolitan City Using a TRNSYS (TRNSYS를 이용한 지역별 고정형 태양광모듈 배치안 검토)

  • Park, Sung-Hyun;Seo, Jang-Hoo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.297-302
    • /
    • 2011
  • In this study, used Trnsys and will apply metropolitan city distinguishes, fixations and BIPV systems the photovoltaic module arrangement environment which receives solar radiation quantity plentifully from the case design process which and most the outcome value simulation did analyzed. The climate data uses each metropolitan city distinguishes 20 average weather data, With measured values of horizontal solar radiation. The error scope appeared with 0.1%~6.7%. Variable of module arrangement Azimuth and angle of inclination of module and comparison group Module on due south direction angle of inclination $45^{\circ}$ day time set with the yearly average solar radiation quantity which receives. The result When the case comparison group which arranges a solar storehouse module with optimum environment and comparing until the minimum 1.4% - maximum 10.9% the solar radiation quantity difference appears with the thing, metropolitan city distinguishes considers the case solar radiation quantity which will arrange a photovoltaic module and that must establish with optimum environment judges.

  • PDF

Transition of Isc according to Natural Solar Spectrum on c-Si and a-Si PV Module (결정질과 비정질 PV모듈의 자연광 스펙트럼에 따른 Isc의 변화)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.86-91
    • /
    • 2009
  • In this paper, we analyze the Transition of Isc by natural solar spectrum of c-Si and a-Si PV module. Commonly, performance of photovoltaic (PV) module is estimated under the standard test condition (STC). That is, solar irradiance $1kW/m^2$, solar spectrum distribution: AM1 5G, module temperature $25^{\circ}C$ This means it rarely meets actual outdoor conditions. The solar spectrum always changes. So it is rare to fit the standard solar spectrum AM1 5G defined in ASTM G173-03 or IEC 60904-3. Thus spectral response of PV module is different depending on the material. so we estimated the variation of Isc at every minutes by comparing c-Si PV module with a-si PV module for outdoor conditions.

  • PDF

A Study on the Parameter Estimation of Solar Cell Module (태양전지 모듈의 파라미터 추정에 관한 연구)

  • Kim, Tae-Yeop;Lee, Yun-Gyu;An, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.92-98
    • /
    • 2002
  • It is necessary to measure the solar cell parameter fur understanding characteristic of solar cell and applying to many other fields. Since photovoltaic system consists of solar cell module, which are connected each other in series and parallel, it is not proper to apply a solar cell parameter to photovoltaic system. Therefore, to estimate the solar tell module and to solve the problem of the established algorithm is on demand. In this paper the authors have improved the accuracy of solar cell module Parameter estimation by compensating series and Parallel resistance, and developed a new parameter estimation algorithm, which can be applied to photovoltaic system without high cost measuring equipment. And the validity of proposed algorithm is verified by the simulation and experimentation.