• Title/Summary/Keyword: Solar Irradiation

Search Result 297, Processing Time 0.029 seconds

Dye-sensitized solar cells using size dependent SBM binder

  • Park, Gyeong-Hui;Kim, Eun-Mi;Jo, Hong-Gwan;Wang, Gyo;Hong, Chang-Guk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.116-116
    • /
    • 2009
  • $TiO_2$ pastes was synthesized to obtained of high efficiency dye-sensitized solar cells using size dependent co-polymer. SBM co-polymer binder is consist of styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The photoanodes were characterized by ATR-Fourier Transform spectrometer, X-ray diffraction (XRD) and morphology was investigated by field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density, AC impedance and monochromatic incident photon-to-current conversion efficiency (IPCE). DSSC based on the 100nm size co-polymer binder was obtained conversion efficiency of 8.1% under irradiation of AM 1.5(100 $mWcm^2$).

  • PDF

CdSe-sensitized Photoelectrochemical Solar Cell Prepared by Spray Pyrolysis Deposition Method

  • Im, Sang-Hyuk;Lee, Yong-Hui;Seok, Sang-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • We fabricated CdSe-sensitized photoelectrochemical solar cell by depositing CdSe nanoparticles on nanoporous $TiO_2$ (np-$TiO_2$) via spray pyrolysis deposition method. By adjusting the amount of CdSe-sensitizer deposited on np-$TiO_2$, we can fabricate an efficient CdSe-sensitized solar cell (${\eta}$ = 3.0% under 1 sun irradiation) in polysulfide liquid electrolyte.

The Effects of WO3 Nanoparticles Addition to the TiO2 Photoelectrode in Dye-Sensitized Solar Cells

  • Vu, Hong Ha Thi;Hwang, Yoon-Hwae;Kim, Hyung-Kook
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • Increasing the efficiency of dye-sensitized solar cells (DSSCs) by the fabrication of new photoelectrodes (PEs) is an important challenge. This study examined the photovoltaic parameters of DSSCs composed of a $TiO_2$ PE with $WO_3$ nanoparticles (NPs). A number of PEs with the same thickness but different concentrations of $WO_3$ NPs in the $TiO_2PE$ were prepared. The morphology and structural properties of the prepared PEs were examined by field-emission scanning electron microscopy and X-ray diffraction, respectively. The effects of the $WO_3$ NPs mixing concentration on the efficiency of DSSCs were investigated under simulated solar light irradiation.

A Study on Thermal Environment Analysis of a Greenhouse (시설원예용 난방온실의 온열환경 분석에 관한 연구)

  • Song, Lei;Park, Youn Cheol
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • To study the effects of solar energy in a greenhouse, outdoor air temperature and wind speed on inside air temperature, a simulation model for forecasting the greenhouse air temperature was conducted on the basis of the energy and mass balance theory. Application of solar energy to the greenhouse is major area in the renewable energy research and development in order to save energy. Recently, considering the safety and efficiency of the heating of greenhouse, clean energy such as geothermal and solar energy has received much attention. The analysed greenhouse has $50m^2$ of ground area which located in jocheon-ri of Jeju Province. Experiments were carried out to collect data to validate the model. The results showed that the simulated air temperature inside a plastic greenhouse agreed well with the measured data.

Electrical Characteristics of c-Si PV Module for the Spread of Natural Light Spectrum (자연광 스펙트럼 분포에 의한 단결정 PV 모듈의 전기적 특성)

  • Hong, Jong-Kyuong;Kang, Gi-Hwan;Park, Chi-Hong;Jung, Tae-Hee;Ryu, Se-Hwan;L, Waithiru;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.193-198
    • /
    • 2009
  • Recently, characteristic research by the changes in the spectrum, one of the factors that influence analysis of maximum output power of PV module, has been studied. In this paper, a one-day intensity of solar irradiation, change of spectrums with time and electrical output for spectrums are analyzed. As a result, blue-rich wavelength compared with red-rich wavelength has large variation of solar irradiance with time, so we recognized that change of solar irradiance is dominated by variation of blue~rich wavelength. Also in same intensity of solar irradiance, electrical output in blue-rich wavelength was 3-8 % higher than one in red-rich wavelength.

The Study on the Operating Characteristic of MPPT for Photovoltaic System with Inverter Type Airconditionig System (인버터형 에어컨 전원용 태양광시스템의 MPPT 동작 특성에 관한 연구)

  • Yu, G.J.;Cha, I.S.;Lim, J.Y.;Kim, D.H.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.129-135
    • /
    • 1998
  • A photovoltaic system is an infinite and clean energy system. A photovoltaic system consists of a solar cell array, a converter, a inverter and a control unit. It is necessary that the Maximum Power Point Tracker(MPPT) is applied to the photovoltaic system because the output power of solar cell array is varied with irradiation, temperature and external effects. In this paper, the neural networks theory, one of the control methods, is applied to track the maximum power point of the photovoltaic system. The MPPT using neural networks theory is proposed to improve existing energy converter efficiency. Also the theory is applied to operation of inverter type airconditionig system.

  • PDF

PSCAD/EMTDC Based Modeling of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 모델링)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.204-207
    • /
    • 2004
  • The paper proposes a simulation model of grid-connected photovoltaic generation system (PV system) using on PSCAD/EMTDC, a reliable power system and apparatus transient analysis program. A equivalent circuit model of a solar cell is used for modeling solar array. A series of parameters required for array modeling are deduced from general specification data of a solar module. A PWM voltage source inverter (VSI) model is presented and current control scheme is implemented for VSI control. A maximum power point tracking (MPPT) technique is applied for controlling the PV system. Simulation case study provides V-I and V-P characteristics of solar array and PV system control performance for irradiation changes.

  • PDF

Disinfection of E.coli in Drinking Water by TiO2 Photocatalytic System (TiO2 광촉매 시스템을 이용한 음용수 중의 대장균 살균연구)

  • Jung, Jin-Ah;Kwak, Do Hwan;Oh, Dae Woong;Park, Dong Min;Yang, O-Bong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • Disinfection of Escherichia coli (E. coli) in drinking water was investigated by using $TiO_2$ and $TiO_2-SiO_2$ based photocatalyst prepared by sol-gel method. The disinfection test was carried out in an annular flow reactor with circulating sterile water containing the photocatalysts powder under UV-A irradiation. The disinfection activity was proportional to the anatase`s intensity of crystalline peak of the $TiO_2$ photocatalysts. 100% disinfection of E.coli without endotoxin was achieved with $TiO_2$ coated photocatalytic system under UV-A irradiation within 2 h. However, toxic endotoxine was exist in the disinfection of E.colithe under UV-C irradiation even though 100% disinfection of E.colithe within 30 min, which suggest that $TiO_2$ coated photocatalytic system with UV-A is useful tool for the disinfection of E.coli in drinking water.

Numerical Study on Thermal Characteristics at Absorber Plate of Flat-Plate Solar Collector with Single Riser (평판형 집열기의 단일 지관에서의 입구 Re수에 따른 흡열판 온도분포에 대한수치해석 연구)

  • Kim, Jeong-Bae;Lee, Dong-Won;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.149-154
    • /
    • 2007
  • It is essential to know the heat transfer characteristics at the absorber plate of Flat-plate solar collector for optimum design. For flat-plate solar collector, it is difficult to experimentally study the effect for the Reynolds number of riser considering low mass flow rate being applied into the collector with one riser tube. So, this study were performed to show the heat transfer characteristics of flat-plate solar collector with single absorber plate and riser for various Reynolds number at riser using commercial code FLUENT 6.0. The base collector size is chosen with $0.4m^2$ as 0.2m by 2m with single riser in this study, Reynolds number at riser is from 200 to 1200 including about 530 at typical flat-plate collector with 10 risers considering the mass flow rate of 0.02kg/s per collector area for the certificate test Through the simulation, the results were presented as the temperature distribution at the absorber plate for various flow rate and solar irradiance conditions, then showed the effective length scale of the absorber plate The real solar irradiation condition is assumed as the constant heat flux condition of $500w/m^2$ considering the annual average solar irradiance in Korea.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.