• Title/Summary/Keyword: Solar Hot Water Heating System

Search Result 116, Processing Time 0.023 seconds

Verification Experiment and Analysis for 6 kW Solar Water Heating System(Part 1: Verification Experiment) (6kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제1보 실증실험))

  • 김진홍;김성수;최봉수;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.128-134
    • /
    • 2004
  • In order to verify and take measures against a variety of troubles which cannot be predicted in a well-controlled laboratory, it is necessary that solar system should be experimented in an actual situation during a long period. Through this experiment it can be also understood how the load pattern and operational conditions expected in a design process become different to those in the actual running, which can be applied to a new system design. We installed 6 kW solar hot water heating system with a shower facility and operated during 7 months. As a result, average 8.3 persons took a shower a day; solar fraction is 71% and total collector efficiency is 40% during the periods from March to September. We confirmed several troubles encountered in the actual situation and considered practical center-measures.

Optimization Design of Solar Water Heating System based on Economic Evaluation Criterion using a Genetic Algorithm (유전알고리즘 이용 경제적 평가기준에 따른 태양열급탕시스템 최적화 설계에 관한 연구)

  • Choi, Doosung;Ko, Myeongjin;Park, Kwang-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.73-89
    • /
    • 2016
  • To assure maximum economic benefits and the energy performance of solar water heating systems, the proper sizing of components and operating conditions need to be optimized. In recent years, a number of studies to design optimally solar water heating systems have been tried. This paper presents a design method for optimizing the various capacity-related and installation-related design variables based on life cycle cost using a genetic algorithm. The design variables considered in this study included the types and numbers of solar collector and auxiliary heaters; the types of storage tanks and heat exchangers; the solar collector slope; mass flow rates of the fluid on the hot and cold sides. The suggested method was applied for optimizing a solar water heating system for an elementary school in Seoul, South Korea. In addition, the effectiveness of the proposed optimization method was assessed by analyzing the obtained optimal solutions of six case studies, each of which was simulated with different solar fractions. It is observed that a trade-off between the equipment cost and the energy cost results in an optimal design that yields the lowest life cycle cost. Therefore, it could be helpful to apply the optimal solar water heating system by comparing the various design solutions obtained by using the optimization method instead of the engineer's experience and intuition.

Study on Thermal Dewatering of Sludge Using the Parabolic Through Collector(PTC) Solar Collector (PTC태양열 집열기를 이용한 슬러지 열탈수 연구)

  • Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.49-56
    • /
    • 2014
  • A fiat-plate or vacuum tube solar collector have been mainly used for hot water supply of house because of some being difficult to get uniform energy density, so little applied into industrial field. This study is to apply the PTC(parabolic trough collector) solar collector into industrial field such as sludge dewatering system for energy reduction. The real scale system which composed of PTC Solar Collector and Thermal Dewatering (TDW) is established. PTC solar collector is designed to produce a hot water with $80^{\circ}C$ of temperature. And size of TDW is $630{\times}630mm$. Hot water produced from PTC solar collector is supplied into heating plate of TDW, and sludge like waterworks or wastewater is dewatered. PTC solar collector with $10m^2$ of area produce energy of average 5,618 kcal. As according to results from real scale performance, solar collector takes charge 94 % of the amount that TDW consume energy which is so large part if compare with boiler. It means that PTC solar collector is useful to apply industrial field under the condition of sufficient solar radiation. And it is analyzed that TDW by PTC solar collector has an economical validity.

The Effect of a Manifold in a Storage Tank Applied to a Solar Combisystem (태양열 콤비시스템의 축열조에 적용되는 분배기의 효과)

  • Son, Hyo Seok;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.322-328
    • /
    • 2014
  • Return piping is used in a solar combi-system for heating and hot water supply. When the temperature of the lower side of a storage tank is low due to hot water usage, the returned hot water after heating is mixed with the lower side cold water of the tank, and the useful energy is reduced. We studied the degree of thermal stratification in the tank, using either a diffuser or a manifold to prevent mixing. Using the diffuser, mixing starts from the bottom of the storage tank. On the other hand, the manifold has the marked effect of preventing mixing. As a result of experiments with changing the diameter and number of holes in the manifold, the optimum condition is 8.5 mm diameter and 96 holes, under the condition of 0.3 lpm.

A Study on Optimun Design of Solar Hot Water Heating System (태양열 급탕시스템의 최적설계에 관한 연구)

  • Kim, Won-Tae;Seoh, Jeong-Il
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 1984
  • This paper presents a method for estimating the useful output of solar D.H.W. system. Heating load calculations, climate data and various conditions are used in this procedure to assess the fraction of the monthly solar energy and the actual solar energy supplied by solar energy for particular system. The design procedure presented in this paper referred to the f-Chart Method. The results of analyzing of this study by Fortran programming are as follows ; 1 . The amount of actual solar energy required to the hot water system is slowly rised to the ascend of tilt angle within the range of $45^{\circ}$, with is decreased since $45^{\circ}$. 2. The fraction of solar energy is superior when collector area is $8.64m^2$. 3. At the tilt angle with the range of $37.6^{\circ}\~45^{\circ}$, the amount of actual solar energy established the best results. 4 Both the fraction of solar energy and the actual solar energy are the most suitable during the storage volume is $300{\iota}$.

  • PDF

An Empirical Study on the Thermal Performance and Dynamic Behavior of Wall Integrated Thermosiphon Solar Water Heater (벽체일체형 자연순환 태양열온수기의 동적거동과 열성능에 관한 실증연구)

  • Baek, Nam-Choon;Kim, Sung-Bum;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.25-35
    • /
    • 2016
  • In this study, the evaluation of the dynamic behavior and thermal performance of the "Façade integrated Natural circulation Solar Water Heating System" installed in the residential house was carried out. Experimental tests were performed during the all year around in the rural houses of $166m^2$ in size. Facade integrated solar collector of $5m^2$ were installed on the south-facing. Electrical heater of 1 kW capacity as an auxiliary heater was installed at the upper part of the heat storage tank. The analyzing results are as follows. (1) Monthly average solar fraction was 51 to 87% and yearly average value is 64%. (2) Hot water supply temperature in December which has the lowest solar altitude is 37 to $76^{\circ}C$. The highest working fluid temperature of solar collector in this period was below $84^{\circ}C$. The temperature difference of working fluid between the collector inlet and outlet has been shown to be around 9 to $26^{\circ}C$. (3) Overheating which is one of the biggest problems during summer did not appear at all, but rather had hot water supply temperature is rather low as $30{\sim}47^{\circ}C$ in summer than winter, which is supplied by a small solar load. The solar collecting temperature has been shown to maintain below $55^{\circ}C$. (5) The thermal performance of Facade integrated solar collector can be increase due to the reduction of heat loss to the back of the collector wall integration of the collector is reduced. As a conclusion, Facade integrated natural circulation type Solar Water Heating System is a well-functioning without any pumps or controllers, and it was found that the disadvantages of conventional solar water heaters, hot water or hot water system can be greatly improved.

Analysis of demonstration research on solar heat pump system for room and hot water heating in the southern part of South Korea (남부지역의 태양열이용 열펌프식 온수.난방시스템의 실증연구 분석)

  • Sun, Kyung Ho;Kim, Ki Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.198.1-198.1
    • /
    • 2010
  • The goal of this study is to measure and compare the performance of solar heat pump for room and hot water heating. To accomplish the goal, solar heat pump with alumium roll bond type evaporator and indoor heat exchanger(condenser) was built and fully instrumented with thermocouples and pressure transducers etc. The test results showed that the COP(coefficient of performance) of HFC-134a($CF_3CH_2F$) were higher than those of CFC-12($CF_2Cl_2$). One "stratospherically safe" new refrigerant is 1,1,1,2-tetrafluoroethane(HFC-134a), which is thermodynamically similar to CFC-12 and considered to be a potential direct replacement for CFC-12 in air-conditioning and refrigeration applications. The solar heat pump system for room heating was designed to show the best efficiency that the room temperature make $18{\sim}20^{\circ}C$ and $23{\sim}25^{\circ}C$ in the southern part of South Korea during November, December, and January.

  • PDF

Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System (지역난방 적용 태양열시스템의 장기 열성능 분석)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

Estimation of Indoor Environment using CFD of Multi-Purpose System with a Solar Collector -Part 1, focused on floor area and number of ventilation- (태양열온수기 적용 냉난방시스템의 CFD를 이용한 실내환경 평가 -제1보 바닥면적과 환기횟수를 중심으로-)

  • Kim, Jong-Ryeol;Choi, Kyang-Hyan
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.55-61
    • /
    • 2007
  • This paper has been conducted to estimate cooling capacity of the dehumidification tower using hot water from a solar water heating system as a energy source of regeneration process when the dehumidification and drying system is applied to room cooling. A solar water heating system was operated and indoor temperature distributions were simulated according to weather conditions when the concerned solution was used to dehumidify room air in the dehumidification tower. Through this simulation researches we found th following results ; It was found that air velocity through supply and return diffusers should be controlled because it can cause uncomfort in dwelling area. It was found that in the sunny morning temperatures of dwelling area 1 and 2 are higher than those of dwelling area 3 and 4. In this research all the calculation results of heating and cooling system supported by solar water heater have confirmed that its cooling capacity could not reach PMV 0, thermal comfort.

Freeze Protection for Passive Solar Water Heating System (자연순환형 태양열온수기 동파방지기술)

  • Kim, Jong-Hyun;Hong, Hi-Ki;Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.