• Title/Summary/Keyword: Solar Efficiency

Search Result 2,688, Processing Time 0.03 seconds

A Design of the Solar Tracker for LED Streetlight in Using Solar Cell (태양전지를 이용한 LED 가로등의 태양광 추적 장치 설계)

  • Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.1-9
    • /
    • 2013
  • A standalone LED lighting system in using solar energy has been used usually less than 70W of lighting power because of a troublesome installation and maintenance. In this system, as more and more LED lighting power increases, the capacity of photovoltaic panel does proportionally, and to improve the charging efficiency of solar energy, MPPT(Maximum Power Point Tracking) techniques is used frequently, but the solar tracker is not. In this paper, a solar tracker which traces the light of the sun in varying hour to hour is studied to apply to the standalone LED lighting system. This solar tracker consists of twin axis for tracing the azimuth and altitude respectively, and it has a robust structure with safe mode to stand a strong wind. As a result of analysis, generating efficiency of the traced type has improved on the fixed one 28.84% on average.

Design of Sun Tracker System for Solar Power Generation (태양광 발전을 위한 태양추적시스템 설계)

  • An, Jun-Sik;Heo, Nam-Euk;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.330-332
    • /
    • 2006
  • In this paper, sun tracking system using Sun position sensor is proposed, the sun tracking system designed as which raises the efficiency of solar power generation. It design the structure being simple and it develops the system which is economical efficiency. It develops the hazard technique such as location tracking method of the sun which uses the sensor and to use the motor solar cell module movement. The Sun tracking system makes the drive in order to do with one axis and to use the sensor and to know in order to put out, the location of the sun and it makes. To make the solar location tracking sensor where the structure is simple it used two solar cells.

  • PDF

A Study on Solar Heating System Technology Combining Multiple Technology with Mutual-Complementary Method - Low-cost, high efficiency, large-scale use of solar heating system - (다원기술 상호보완식 태양열 난방기술 - 저원가 고효율 규모화 태양열 난방 방안 -)

  • Nan, Bao-Xuan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2008
  • The article deals with system technology of a new solar heating system which systematically combines exiting solar collector technology, auxiliary electrical water heating, floor heating system and well insulated construction method and its application of this system to apartment house heating system in the cold region, and also analyzed performance of the new system in terms of technical and economic feasibility. Results shows that energy efficiency approaches up to 50% of the energy consumption of local construction from 1980 to 1981. The implementation of "DQ technology" to floor heating system achieved from 79% to 85% of the energy-saving benefits comparing to other housing units which were supplied by the local district heating plant.

Field Test for a Biological Nitrogen Treatment System with Low Temperature Solar Thermal Energy (저온 태양열을 이용한 생물학적 오수 처리 장치 실증 실험)

  • Chung, Mo;Lee, Dong-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • A low-temperature solar thermal system assisting a biological nitrogen treatment reservoir was designed and field-tested. A large tank whose temperature was maintained at about $25-30^{\circ}C$ to enhance the performance of a biological nitrogen treatment process was heated by an array of flat plate solar collectors. Test results revealed that the overall collector efficiency was above 50% for the most cases tested. This high efficiency was possible owing to the relatively low collector temperature that can be traced back to the reservoir temperature. A substantial enhancement in nitrogen treatment was observed as a result of maintaining the reservoir temperature higher.

The Comparative Analysis of Drying-Conditions, -Rates, -Defects and Yield, and Heat-Efficiency in Solar-Dehumidification-Drying of Oaks With Those in Conventional Air-, Semi-Greenhouse Type solar-, and Kiln- Drying (참나무류(類)의 제습태양열건조(除濕太陽熱乾燥)의 조건(條件), 속도(速度), 결함(缺陷), 수율(收率) 및 열효율(熱效率)과 관행(慣行) 천연(天然), 반온실형(半溫室型) 태양열(太陽熱) 및 열기건조(熱氣乾燥)와의 비교(比較)·분석(分析))

  • Lee, Hyoung-Woo;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.22-54
    • /
    • 1989
  • Seasonal semi-greenhouse type solar-drying of 2.5cm-and 5.0cm-thick lumber of Quercus aliena Blume and Quercus variailis Blume was carried out to investigate the possibility of solar-drying of wood and to decide the active solar-drying period in Korea. In the active solar-drying period obtained solar-dehumidification, semi-greenhouse type solar-, air- and kiln-drying of 2.5cm -thick lumber of oaks were carried out to analyze drying-rates. -defects, and -yield in each drying-method and to calculate daily total absorbed solar-radiation the solar dryers. The energy balance equations were set up, considering all the energy requirements, to analyze the heat efficiencies of semi-greenhouse type solar and solar-dehumidification-dryer. In a seasonal drying the drying rate of semi-greenhouse type solar-dryer was highest in summer, and greater in fall, spring, and winter in order. Solar-drying time was 45% in summer to 50% in winter of the air-drying rime, and more serious drying-defects occurred in air-drying than in solar-drying. In the active solar-drying period. April, May, and June, the average drying rate in solar-dehumidification-drying was 1.0%/day and greater than 0.8%/day in semi-greenhouse type solar-drying. In solar-dehumidification-drying the time required to dry lumber to 10% moisture content was less than 60 days, and solar-dehumidification-drying showed the highest drying-yield, 65.01%, than the other drying methods. The daily total absorbed solar radiations were 8.51MJ on the roof collector and 6.22 MJ on the south wall collector. In the energy blance 69.48% of total energy input was lost by heat conduction through walls, roof. and floor 11.68% by heat leakage, 0.33% by heating the internal structures of the solar-dryer and 5.38% by air-venting. Therefore the heat efficiency of semi-greenhouse type solar-dryer 13.13%, was lower than that of solar-dehumidification-dryer, 14.04%. Solar-drying of lumber in Korea showed the possibility to reduce the air-drying-time in every season and the efficiency of solar-dehumidification drying was higher than that of semi-greenhouse type solar-drying.

  • PDF

An Experimental Study of a Water Type PV/Thermal Combined Collector Unit (액체식 PV/Thermal 복합모듈의 성능실험연구)

  • Lee, Hyun-Ju;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.105-111
    • /
    • 2007
  • Hybrid PV/Thermal systems consisting of photovoltaic module and thermal collector can produce the electricity and thermal energy. The solar radiation increases the temperature of PV modules, resulting in the decrease of their electrical efficiency. Accordingly hot air can be extracted from the space between the PV panel and roof, so the efficiency of the PV module increases. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. This study describes a basic type of PV/T collector using water. In order to analyze the performance of the collector, the experiment was conducted. The result showed that the thermal efficiency was 17% average and the electrical efficiency of the PV module was about $10.2%{\sim}11.5%$, both depending on solar radiation, inlet water temperature and ambient temperature.

Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells (태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids (나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구)

  • Lee, Seung-Hyun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.799-805
    • /
    • 2013
  • An analytical study is conducted to assess the efficiency of a flat-plate solar collector using nanofluids. The nondimensionalized 2D heat diffusion equation is solved by assuming a wavelength-independent extinction coefficient and intensity to obtain the analytical solution of the temperature distribution in the flat-plate solar collector. The dimensionless temperature distribution is investigated as functions of the volume fraction of the nanofluids, magnitude of heat loss, and collector's depth based on the analytical solution when using water-based single-walled carbon nanohorn (SWCNH) nanofluids as a working fluid. Finally, the efficiency of the flat-plate solar collector using the nanofluids is predicted and compared with that of the conventional solar collector. The results indicate that the efficiency of the nanofluid solar collector is better than that of the conventional solar collector under specific geometrical conditions.

Development of geothermal exchanger for efficiency improvement of solar cell module (태양전지 모듈의 효율개선을 위한 지열교환 장치 개발)

  • Lee, Jei-Hoon;Oh, Hun;Kim, Jun-Seong;Kim, Do-Woong;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2966-2970
    • /
    • 2015
  • Recently, solar light power generation is widely extended by support policy to regeneration energy. However generation efficiency is decreased when solar module maintain higher than certain point temperature. Therefore, it is need to maintenance under certain point temperature. An method of solving this problem, this paper is developed geothermal exchanger for efficiency improvement of solar cell module. Geothermal exchanger consisted of heat absorber of solar cell module and heat conductor and radiator. Heat of solar cell module is radiated in the earth by geothermal exchanger. An a result, geothermal exchanger is increased generation amount of solar cell module and experiment result showed costs to about 36% increment of generation power.

Efficiency of a Direct Absorption Solar Collector using Ag Nanofluids Synthesized by Chemical Reduction Method (화학적 환원법으로 제조된 은나노유체를 사용한 직접흡수식 태양열 집열기의 효율)

  • Lee, Seung-Hyun;Park, Yong-Jun;Choi, Tae Jong;Jang, Seok Pil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.65-72
    • /
    • 2014
  • In this paper, the water-based Ag nanofluids are synthesized by the chemical reduction method and their extinction coefficients are measured by an in-house developed measurement device. The Ag nanofluids are manufactured by the chemical reduction method with the mixing of silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in an aqueous solution of polyvinyl pyrrolidone (PVP). The extinction coefficients of Ag nanofluids are measured by means of the in-house developed apparatus at a wavelength of 632.8nm according to the particle volume fractions. The results show that the extinction coefficient of water-based Ag nanofluids increases with the increase of nanoparticle concentrations. Finally, the temperature field and efficiency of direct absorption solar collector (DASC) are analytically estimated based on the measured extinction coefficient of water-based Ag nanofluids. The results indicate that the direct absorption solar collectors using nanofluids have the feasibility to improve the efficiency of conventional flat-plate solar collectors without using an absorber plate.